1N-20 97737

# NASA Technical Paper 3536

October 1996

Brush Seals for Cryogenic Applications Performance, Stage Effects, and Preliminary Wear Results in LN<sub>2</sub> and LH<sub>2</sub>

Margaret P. Proctor,
James F. Walker,
H. Douglas Perkins,
Joan F. Hoopes,
and G. Scott Williamson



# NASA Technical Paper 3536

1996

Brush Seals for Cryogenic Applications Performance, Stage Effects, and Preliminary Wear Results in LN<sub>2</sub> and LH<sub>2</sub>

Margaret P. Proctor, James F. Walker, H. Douglas Perkins, Joan F. Hoopes, and G. Scott Williamson Lewis Research Center Cleveland, Ohio



National Aeronautics and Space Administration

Office of Management

Scientific and Technical Information Program

# Brush Seals for Cryogenic Applications: Performance, Stage Effects, and Preliminary Wear Results in ${\rm LN_2}$ and ${\rm LH_2}$

Margaret P. Proctor, James F. Walker, H. Douglas Perkins, Joan F. Hoopes, and G. Scott Williamson NASA Lewis Research Center Cleveland, Ohio 44135

### **Summary**

Brush seals are compliant contacting seals and have significantly lower leakage than labyrinth seals in gas turbine applications. Their long life and low leakage make them candidates for use in rocket engine turbopumps. Brush seals, 50.8 mm (2 in.) in diameter with a nominal 127-µm (0.005-in.) radial interference, were tested in liquid nitrogen (LN2) and liquid hydrogen (LH<sub>2</sub>) at shaft speeds up to 35 000 and 65 000 rpm, respectively, and at pressure drops up to 1.21 MPa (175 psid) per brush. A labyrinth seal was also tested in liquid nitrogen to provide a baseline. The LN<sub>2</sub> leakage rate of a single brush seal with an initial radial shaft interference of 127 µm (0.005 in.) measured one-half to one-third the leakage rate of a 12-tooth labyrinth seal with a radial clearance of 127 µm (0.005 in.). Two brushes spaced 7.21 µm (0.248 in.) apart leaked about one-half as much as a single brush, and two brushes tightly packed together leaked about three-fourths as much as a single brush. The maximum measured groove depth on the Inconel 718 rotor with a surface finish of 0.81 \mum (32 \muin.) was 25 \mum (0.0010-in.) after 4.3 hr of shaft rotation in liquid nitrogen. The Haynes-25 bristles were approximately 25 to 76 µm (0.001 to 0.003 in.) under the same conditions. Wear results in liquid hydrogen were significantly different. In liquid hydrogen the rotor did not wear, but the bristle material transferred onto the rotor and the initial 127-µm (0.005-in.) radial interference was consumed. Relatively high leakage rates were measured in liquid hydrogen. More testing is required to verify the leakage performance, to validate and calibrate analysis techniques, and to determine the wear mechanisms. Performance, staging effects, and preliminary wear results are presented.

#### Introduction

Brush seals are being tested in cryogenic fluids to determine their usefulness in cryogenic turbopumps for rocket engine systems. Successfully operated for thousands of hours in gas turbine applications, brush seals have shown a significant improvement in leakage performance over labyrinth seals (a 50- to 90-percent reduction initially and for long life applications, a 20- to 25-percent reduction, refs. 1 to 3). Their low leakage and long life make brush seals candidates for use in rocket engine turbopumps, particularly for space-based engines and reusable launch engines. The low leakage requirement is critical in meeting the wide-operating-range requirement of space engines in which seal leakage can significantly reduce engine performance at low thrust levels. Brush seals have also been shown to be more rotordynamically stable than labyrinth seals (ref. 4). Little brush seal data exist in the open literature and that which does has focused on gas applications (refs. 5 to 9). The first brush seal data taken in liquid nitrogen were obtained by Rocketdyne under a cooperative agreement with the NASA Lewis Research Center (ref. 10). This report will present liquid nitrogen and the first liquid hydrogen brush seal data known to be taken.

In a cryogenic turbopump, brush seals may be used to seal either liquid hydrogen or liquid oxygen at locations near the pump or the bearings, or they may be used to seal hot gaseous hydrogen, combustion gases, warm gaseous oxygen, or helium at locations near the turbine or purge seals. In this environment, large temperature gradients, oxygen compatibility, and hydrogen embrittlement are concerns. Also, shaft speeds can be quite high, up to 200 000 rpm for future upperstage rocket engine liquid hydrogen turbopumps. Because brush seals are compliant contacting seals, their wear rate and wear mechanism are important. To address the full range of conditions that a brush seal may be exposed to in a cryogenic turbopump, hot gas testing is also being done at the NASA Lewis Research Center (ref. 11).

The testing of brush seals in liquid nitrogen and liquid hydrogen was conducted at the NASA Lewis Research Center at shaft speeds up to 35 000 and 65 000 rpm, respectively, and at pressure drops up to 1.21 (175 psid) per seal. A labyrinth seal was also tested in LN<sub>2</sub> to provide a baseline for comparison. The apparatus, test procedures and operating conditions, calculations, and prediction tools are described. The results of the liquid nitrogen data presented and discussed include labyrinth seal and single brush seal steady-state performance, staging effects, and preliminary wear data. The hydrogen data presented are for a single brush and include steady-state performance and preliminary wear data.

### **Apparatus**

#### **Facility Description**

Testing was conducted in cell 2 of the Cryogenic Components Laboratory (CCL) at the NASA Lewis Research Center. An aerial photograph of the CCL is shown in figure 1. The test cell, a 4.6- by 4.6-m (15- by 15-ft) expendable building with rollup doors on each side, housed the test article and the associated flow-control and instrumentation hardware. Highpressure liquid hydrogen (LH<sub>2</sub>) or liquid nitrogen (LN<sub>2</sub>) was fed into the test cell from an adjacent 4.92-m<sup>3</sup> (1300-gal), 9.93-MPa (1440-psig) run dewar. This tank was filled from either a 45.42-m<sup>3</sup> (12 000-gal) LH<sub>2</sub> low-pressure storage dewar or a 15.14-m<sup>3</sup> (4000-gal) LN<sub>2</sub> low-pressure storage dewar, depending on the fluid required, and then was pressurized with gas from two 16.55-MPa (2400-psig), 1982-m<sup>3</sup> (70 000-scf) gaseous hydrogen (GH<sub>2</sub>) or gaseous nitrogen (GN<sub>2</sub>) tube trailers, respectively. These two tube trailers also supplied GN<sub>2</sub> or GH<sub>2</sub> to the test rig turbine drive for the LN<sub>2</sub> and LH2 tests, respectively. After flowing through the test rig, all fluids were vented to the hydrogen burnoff located behind the test cell. All system piping, shown schematically in figure 2, was helium and vacuum purged before each LH<sub>2</sub> test. Gaseous nitrogen was used as the purge gas for LN<sub>2</sub> testing. These tests were controlled remotely from the CCL control room and were monitored using several video cameras, an audio pickup, and the instrumentation systems.

#### **Test Rig Description**

The test rig is the Low Thrust Pump Tester designed by Rocketdyne under contract NAS3-23164 (ref. 12) and modified to test brush seals. A cross section of the test rig is presented in figure 3. Note that for clarity some of the ports are shown out of rotation. The Inconel 718 shaft is supported by two pairs of cryogenic ball bearings and is driven by an Astroloy full-admission axial-flow turbine on one end of the shaft. A 50.8-mm-(2.000-in.-) diameter seal runner is located on the opposite end of the shaft. Axial loads are supported by a selfcompensating gas-fed balance piston located at the center of the shaft. Very little axial load is generated by the turbine; most of the axial load is a result of the pressure drop across the brush seal. The balance piston can support axial loads due to a pressure drop across the seal of up to 2.07 MPa (300 psid). Intercavity sealing along the shaft is accomplished using several labyrinth seals.

The tester can accommodate from one to five brush seals in a variety of spacing configurations. The seal holder is 304 stainless steel. Two different Inconel 718 seal runners with a 0.81-µm (32-µin.) surface finish were used: a long, low-speed runner and a short, high-speed runner. The low-speed runner can accommodate all five brushes at one time but is limited to 40 000 rpm to stay below the predicted first critical speed of

45 000 rpm. The high-speed runner, a shortened version of the low-speed runner, accommodates just one seal but can be operated at speeds up to 70 000 rpm, the predicted first critical speed.

Liquid hydrogen or liquid nitrogen was supplied to the inboard, high-pressure side of the runner at pressures up to 5.52 MPa (800 psig), the maximum allowable working pressure of the rig. This supply fluid then passed through a perforated plate, which is integral with the test-seal-end labyrinth seal, to steady the flow. In tests where leakage through the brush seal was low, it was necessary to bypass some flow out of the brush seal supply cavity to keep the rig cold enough. Liquid hydrogen or liquid nitrogen was also supplied to the bearings for coolant. Photographs of the test cell with the rig installed and after it had been chilled are shown in figures 4 and 5, respectively.

#### **Test Hardware**

Brush seals are compliant contacting seals. Figure 6 shows a typical brush seal, which comprises a ring-shaped pack of small-diameter wire bristles set at an angle to the radial direction and sandwiched between a front and back washer. The back washer is on the low-pressure side of the seal and serves as a mechanical support to prevent the bristles from bending downstream as a result of the pressure load. Typically, the bristles are designed to have a 127.0- to 254.0-\mu (0.0050- to 0.0100-in.) radial interference with the shaft. Brush seals with an interference leak less than those with a line-to-line or clearance fit (ref. 8). The bristles are angled, usually 30° to 60° and thus act as cantilevered beams. Because of their initial interference with the shaft, the bristles are preloaded and tend to follow the shaft during rotordynamic excursions. The degree to which the bristles follow the shaft, or the frequency response, is important and depends on the radial stiffness of the bristles and mass.

The nominal geometry of the brush seal and runner configurations tested is shown in figure 7. The Inconel 718 seal runner was 50.8 mm (2.000 in.) in diameter and had a surface finish of 0.81 µm (32 µin.) on its outer diameter. The Haynes-25, 0.071-mm- (0.0028-in.-) diameter bristles had a 40° angle to the radius, were packed at a density of 3000 bristles/in.circumference of bore diameter, and had a 127-µm (0.005-in.) nominal radial interference with the runner. The outside diameter of the brushes was 71.60 mm (2.8190 in.) and the axial thickness was 3.61 mm (0.142 in.). Both the front and back washers were made of Hastelloy-X and were 1.42 mm (0.056 in.) thick. The radial clearances between the front and back washers and the runner were 5.08 and 0.279 mm (0.200 and 0.011 in.), respectively. Because there was some slight variation in geometry from brush to brush, the pretest inspection measurements are given in table I. The materials were chosen because they were compatible with liquid nitrogen and hydrogen. The Haynes-25 cobalt-base alloy was used for the bristles because it could

TABLE I.—PRETEST INSPECTION MEASUREMENTS OF BRUSH SEALS AND RUNNERS

| Seal identi-<br>fication<br>number |                                                    | Inside diameter                                    |                                                    |                                                    |                                                    |                                                    |                                                    | tside<br>neter                                           |                                              |                                               | Axial t                                      | hickness                                      | 1                                                  |                                                     |
|------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------------|-----------------------------------------------------|
|                                    | Front                                              | Front washer Bristles                              |                                                    |                                                    | Back                                               | washer                                             |                                                    |                                                          | Front                                        | washer                                        | Back v                                       | washer                                        | Entir                                              | e seal                                              |
|                                    | mm                                                 | in.                                                | mm                                                 | in.                                                | mm                                                 | in.                                                | mm                                                 | in.                                                      | mm                                           | in.                                           | mm                                           | in.                                           | mm                                                 | in.                                                 |
| 1<br>2<br>3<br>4<br>5              | 61.06<br>61.01<br>61.11<br>60.99<br>61.19<br>61.04 | 2.404<br>2.402<br>2.406<br>2.401<br>2.409<br>2.403 | 50.60<br>50.57<br>50.47<br>50.47<br>50.57<br>50.55 | 1.992<br>1.991<br>1.987<br>1.987<br>1.991<br>1.990 | 51.44<br>51.48<br>51.38<br>51.44<br>51.44<br>51.44 | 2.025<br>2.027<br>2.023<br>2.025<br>2.025<br>2.025 | 71.63<br>71.62<br>71.59<br>71.60<br>71.59<br>71.59 | 2.8200<br>2.8197<br>2.8185<br>2.8190<br>2.8187<br>2.8187 | 1.35<br>1.42<br>1.37<br>1.45<br>1.37<br>1.40 | 0.053<br>.056<br>.054<br>.057<br>.054<br>.055 | 1.52<br>1.45<br>1.37<br>1.40<br>1.50<br>1.40 | 0.060<br>.057<br>.054<br>.055<br>.059<br>.055 | 3.620<br>3.627<br>3.607<br>3.632<br>3.627<br>3.569 | 0.1425<br>.1428<br>.1420<br>.1430<br>.1428<br>.1405 |

| Seal identi-<br>fication<br>number |                                               | Radial distance between back washer inside diameter and— |                                               |                                                     |                                               | nt inter-<br>e with<br>ner <sup>a</sup>             | Bristle                                            |                                                     |       |        |                                  |  |
|------------------------------------|-----------------------------------------------|----------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|-------|--------|----------------------------------|--|
|                                    |                                               | inside<br>neter                                          | Runner outside<br>diameter                    |                                                     |                                               |                                                     | Hei                                                | ght <sup>b</sup>                                    | Diar  | neter  | Angle,<br>deg                    |  |
|                                    | mm                                            | in.                                                      | mm                                            | in.                                                 | mm                                            | in.                                                 | mm                                                 | in.                                                 | mm    | in.    |                                  |  |
| 1<br>2<br>3<br>4<br>5<br>6         | 0.419<br>.457<br>.457<br>.483<br>.432<br>.444 | 0.0165<br>.0180<br>.0180<br>.0190<br>.0170<br>.0175      | 0.320<br>.345<br>.295<br>.320<br>.320<br>.315 | 0.0126<br>.0136<br>.0116<br>.0126<br>.0126<br>.0124 | 0.099<br>.102<br>.163<br>.163<br>.102<br>.127 | 0.0039<br>.0040<br>.0064<br>.0064<br>.0040<br>.0050 | 5.232<br>5.220<br>5.321<br>5.258<br>5.309<br>5.245 | 0.2060<br>.2055<br>.2095<br>.2070<br>.2090<br>.2065 | 0.071 | 0.0028 | 37<br>30<br>25<br>38<br>34<br>34 |  |

<sup>&</sup>lt;sup>a</sup>Low-speed runner 1 used with seals 1 to 5. High-speed runner 1 used with seal 6. Low-speed runner 1 o.d.: 50.792 to 50.794 mm (1.9997 to 1.9998 in.); high-speed runner 1 o.d.: 50.808 mm (2.0003 in.).

be drawn; the wire diameter was determined by the available die.

Spacers used to study staging effects had the same overall dimensions as the brush seals and an inside diameter that was the same as the front washer inside diameter. Some spacers had radial holes located to match the instrumentation holes in the housing so when that spacer was used, 1.6-mm- (0.06-in.-) diameter thermocouples and pressure tubes could be installed to obtain interstage fluid conditions. Seal positions and instrumentation stations are defined in figure 8(a). Instrumentation was always installed at the entrance and exit of the brush seal cavity, stations 1 and 5, respectively. Figure 8(b) displays the circumferential orientation of the instrumentation.

#### **Configurations Tested**

Nine seal configurations were tested and are described in table II. Configurations 1 to 8 were tested in  $LN_2$  and configuration 9 was tested in  $LH_2$ . Configuration (1) was a 12-tooth, 127- $\mu$ m- (0.005-in.-) radial-clearance labyrinth seal tested as a baseline with the low-speed rotor in  $LN_2$ . Its axial length is equivalent to five brushes tightly packed, and its geometry is

shown in figure 9. The other configurations were (2) a single brush, (3) two brushes spaced far apart (7.21 mm (0.284 in.), two brush widths between), (4) two brushes tightly packed, and (5) three brushes evenly spaced 3.607 mm (0.142 in., or one brush width between) were tested. Tests of configurations 3 and 5 were repeated and are identified as 6 and 7 in table II: two brushes spaced 7.21 mm (0.284 in.) apart and three brushes evenly spaced. They were repeated because of a problem with the interstage pressure measurements, which is explained in the next section. Then, (8) a single brush was tested to measure static seal performance above 1.21 MPa (175 psid). Finally, in configuration 9, a single brush was tested with the high-speed runner in LH<sub>2</sub>.

#### Instrumentation

The steady-state temperature, pressure, and flow rate of all fluids supplied to the tester were measured along with the seal leakage flow rate and all tester exit temperatures and pressures (see fig. 2). Metal strain gage transducers were used for all pressure measurements. Gold-iron/chromel and chromel/constantan thermocouples were used in the cryogenic liquid

<sup>&</sup>lt;sup>b</sup>Radial length of bristle from front washer inside diameter.

TABLE II.—SEAL CONFIGURATIONS TESTED

| Configuration number | Description                                                        | Seal position |          |              |        | Seal runner | Test fluid      |                 |
|----------------------|--------------------------------------------------------------------|---------------|----------|--------------|--------|-------------|-----------------|-----------------|
|                      |                                                                    | 1             | 2        | 3            | 4      | 5           |                 |                 |
| 1                    | 12-tooth labyrinth                                                 |               |          | All position | ons    | -           | Low speed       | LN <sub>2</sub> |
| 2                    | Single brush                                                       | Seal 2        |          |              |        |             | 1               |                 |
| 3                    | Two brushes far apart                                              |               | Seal 3   |              |        | Seal 4      |                 |                 |
| 4                    | Two brushes<br>tightly packed                                      |               |          | Seal 1       | Seal 5 |             |                 |                 |
| 5                    | Three brushes evenly spaced                                        | Seal 1        |          | Seal 4       |        | Seal 5      |                 |                 |
| 6                    | Two brushes far<br>apart; pressure<br>taps at spacer i.d.          |               | Seal 3   |              |        | Seal 4      |                 |                 |
| 7                    | Three brushes<br>evenly spaced;<br>pressure taps at<br>spacer i.d. | Seal 1        |          | Seal 4       |        | Seal 5      |                 |                 |
| 8                    | Single brush;<br>blowout test                                      | Seal 2        |          |              |        |             |                 |                 |
| 9                    | Single brush                                                       | Seal 6        | <b>_</b> |              |        |             | High speed<br>1 | LH <sub>2</sub> |

systems and gaseous systems, respectively. All flow rate measurements were made using venturis. Venturis of two different sizes were used in series to measure the brush seal leakage rate.

Four pressure and four temperature measurements each were taken at stations 1 and 5. Two pressure and two temperature measurements could be taken at each of the interstage instrumentation stations 2, 3 and 4. Instrumentation at stations 1 through 5 was located 38 µm (0.0015 in.) from the seal runner in configurations 1 and 2. After testing configuration 2, some thermocouple damage was found and the seal instrumentation was moved back to 76 µm (0.003 in.) from the seal runner. The damage was attributed to insufficient support of the tip in a high flow, causing the tips to bend and break. The interstage pressure tubes were pulled back to the inner diameter of the spacer for configurations 6 and 7 because significant differences between pressure measurements at the same station occurred in configurations 3 and 5 and appeared to be speed dependent. These differences were not seen when the pressure tubes were located at the spacer inside diameter and are thought to be caused by a flow disturbance induced by the pressure tube.

Three eddy-current proximity probes located at 40°, 130°, and 220° were used to monitor seal runner orbits (see fig. 8(b) for orientation). Oscilloscopes displayed the orbits in real time. Two eddy-current proximity probes were used to monitor shaft speed at the single-notched balance piston. Another eddy-current proximity probe was used to monitor the axial shaft motion at the balance piston. An accelerometer was mounted on the seal end of the tester housing to measure radial acceleration to monitor the health of the tester. A complete instrumentation list can be found in appendix A.

#### **Data Acquisition**

All steady-state data were recorded using an Escort II data acquisition system that has a sampling rate of 10 kHz. The Escort II system acquires the millivolt data, converts it to engineering units, makes real-time calculations, displays the information on CRT monitors in the control room, and stores the data to the data collector for legal tape storage. The update time is 2 sec. For each steady-state condition, 10 scans of data were recorded. All scans during the static performance test were recorded. Once recorded, the data were sent to the scientific VAX cluster for postprocessing.

Dynamic data from the eddy-current proximity probes and accelerometer were recorded on a 14-channel FM tape recorder. The time code was recorded on channel 14 to enable correlation of the dynamic data with the steady-state data. A bandwidth of 62.5 kHz was used with a tape speed of 381 mm/ sec (15 in./sec). Capacitors (1  $\mu F$ ) filtered out the dc offset of the proximity probe signals to bring them into the 1.0-V peak range of the tape recorder. Four oscilloscopes were used to monitor seal runner orbits, vibration, and speed signals.

In addition to the Escort CRT monitors and oscilloscopes, digital panel meters were used to display certain control and abort parameters, as shown in figure 10. A stop-shaft-rotation abort would be triggered by any of the following conditions: excessive shaft speed, excessive axial shaft motion, or excessive pressure at the turbine inlet.

### **Test Procedure and Nominal Operating Conditions**

After the appropriate facility purges and setup, the seal tester was chilled down by flowing the cryogenic test fluid to the bearings and seal cavities. When liquid temperatures in the tester had been reached, approximately 77.8 K (140 R) for LN<sub>2</sub> and 27.8 K (50 R) for LH<sub>2</sub>, testing began. Nominal inlet pressures were 5.38 to 5.5 MPa (780 to 800 psig) for  $LN_2$  and 2.8 to 3.4 MPa (400 to 500 psig) for LH<sub>2</sub> tests. The outlet pressure of the seal was kept well above the critical pressure to avoid two-phase flow. The pressure drop across the seal package was set by controlling the backpressure on the seal cavity. Temperatures throughout the tester were monitored closely. A significant temperature rise indicated that the test fluid had run out.

#### Labyrinth Seal LN<sub>2</sub> Tests

1.38

1.65

2.07

System checkout tests were conducted with the labyrinth seal installed in the tester. A maximum shaft speed of 38 000 rpm

200

225

300

was obtained at zero pressure drop across the seal. At 0 rpm, a maximum pressure drop across the seal of 2.24 MPa (325 psid) was obtained. Baseline leakage performance of the labyrinth seal was measured for pressure drops across the seal of 0.17 to 2.07 MPa (25 to 300 psid) at shaft speeds of 0, 5, 15, 25, and 35 krpm. A few intermediate test conditions at 10, 20, 30, and 31 krpm were also recorded, as indicated in table III(a).

#### **Brush Seal LN<sub>2</sub> Tests**

√

Prior to any shaft rotation, the LN<sub>2</sub> brush seal leakage rate was measured for increasing and then decreasing pressure drops across the seal of 0, 0.17, 0.52, 0.86, 1.03, 1.21, 1.03, 0.86, 0.52, 0.17, and 0 MPa (0, 25, 75, 125, 150, 175, 150, 125, 75, 25, and 0 psid). Then the pressure drop across the seal was set to 0.17 MPa (25 psid) and the shaft speed was increased to 5000 rpm. Again, data were taken for increasing and decreasing pressure drops across the seal in the same order and at the same levels as at 0 rpm, with the exception of the 0-MPa (psid) point. Because of balance piston limitations, the 0-MPa (psid)

TABLE III.—TEST MATRIX FOR LABYRINTH AND BRUSH SEALS IN LIQUID NITROGEN AND IN LIQUID HYDROGEN

(a) Labyrinth seal in liquid nitrogen

| Seal pre | essure drop |    |          |        |          | Shaft spee | ed, a rpm |        |        |    |
|----------|-------------|----|----------|--------|----------|------------|-----------|--------|--------|----|
| MPa      | psid        | 0  | 5000     | 10 000 | 15 000   | 20 000     | 25 000    | 30 000 | 31 000 | 3. |
| 0        | 0           |    |          | 1      |          | V          |           | 1      |        |    |
| 0.17     | 25          | √. | √        |        | 7        |            | √         |        | √      |    |
| 0.52     | 75          | √  | <b>V</b> |        | <b>V</b> |            | . √       |        | √      |    |
|          |             | 1  | T        |        |          | T          | 1         | i 1    |        |    |

| MPa  | psid | 0 | 5000     | 10 000 | 15 000   | 20 000 | 25 000 | 30 000 | 31 000   | 35 000 |
|------|------|---|----------|--------|----------|--------|--------|--------|----------|--------|
| 0    | 0    |   |          | 1      |          | 1      |        | 1      |          | √ √    |
| 0.17 | 25   | 1 | <b>√</b> |        | 7        |        | √      |        | <b>V</b> | √      |
| 0.52 | 75   | 1 | <b>V</b> |        | <b>V</b> |        | √      |        | <b>V</b> | √      |
| 0.86 | 125  | 1 |          |        | √        |        | 1      | √      |          | √      |
| 1.02 | 150  | 1 | al.      |        | J        |        | V      | J      |          | V      |

√

V

V

 $\sqrt{}$ 

V

V

| Seal pres | ssure drop |   | Shaft speed, rpm |          |          |          |          |   |          |     |  |  |  |  |
|-----------|------------|---|------------------|----------|----------|----------|----------|---|----------|-----|--|--|--|--|
| MPa       | psid       | 0 | 5000             | 0        | 15 000   | 0        | 25 000   | 0 | 35 000   | 0   |  |  |  |  |
| 0         | 0          | 1 |                  | 1        |          | 1        |          | 1 |          | 4   |  |  |  |  |
| 0.17      | 25         | 1 | 1                | 1        | √        | 1        | 1        | 1 | 1        | 1   |  |  |  |  |
| 0.52      | 75         | 1 | √ √              | 1        | 1        | 1        | 4        | 1 | √ √      | 1   |  |  |  |  |
| 0.86      | 125        | 1 | √                | 1        | <b>V</b> | √        | <b>√</b> | 1 | √        | 7   |  |  |  |  |
| 1.03      | 150        | 4 | √                | 1        | 7        | √        | √        | 1 | 1        | 1   |  |  |  |  |
| 1.21      | 175        | 1 | √                | 4        | √        | <b>V</b> | √        | 1 | <b>V</b> | . √ |  |  |  |  |
| 1.03      | 150        | 4 | √                | 1        | √        | 7        | <b>V</b> | √ | √        | 4   |  |  |  |  |
| 0.86      | 125        | √ | √                | √ _      | √        | 1        | <b>V</b> | 1 | √        | √   |  |  |  |  |
| 0.52      | 75         | 1 | 1                | 1        | √        | 1        | 1        | √ | 1        | √   |  |  |  |  |
| 0.17      | 25         | 1 | 1                | √        | 1        | 1        | V        | √ | 1        | √   |  |  |  |  |
| 0         | 0          | √ |                  | <b>V</b> |          | 1        |          | 1 |          | 1   |  |  |  |  |

<sup>325</sup> Shaft speeds of 34 000, 37 000, and 40 000 rpm were also tested.

condition could not be reached during shaft rotation. The shaft was then brought down to 0 rpm and data were taken as the pressure drop was varied from 0 to 1.21 to 0 MPa (0 to 175 to 0 psid). Data were taken in a similar manner for 15 000-, 0-, 25 000-, 0-, 35 000-, and 0-rpm shaft speeds. The repeated data at 0 rpm were taken to determine if wear of the brush or runner had occurred. The specific test conditions for the single brush seal (configuration 2) are given in table III(b). For multiple brush configurations, the procedure was the same, except that the maximum total pressure drop was greater—up to 1.9 MPa (275 psid). However, the pressure drop across any individual brush seal did not exceed 1.21 MPa (175 psid). Each test condition was held for approximately 80 sec.

An additional static seal performance test was conducted for a single brush in LN<sub>2</sub>. The purpose of the test was to determine the leakage performance for high-pressure (>1.21 MPa or 175 psid) drops across the seal and to verify that a seal blowout would not occur. The expected indication of a seal blowout, a condition in which the bristles bend downstream and lift off the shaft, is a sudden increase in leakage rate. After the tester was chilled down, a 0.59-MPa (85-psid) pressure drop across the seal was applied and the shaft speed was increased to 5000 rpm. At this low speed, the pressure drop across the seal was increased to 1.2 MPa (170 psid) and then decreased to 0.59 MPa (85 psid). Next, the shaft speed was brought to zero, and then the pressure drop across the seal was brought to zero. This sequence was used to properly seat the seal before starting the static performance test. At 0 rpm, while data were continually recorded, the pressure drop across the seal was increased to a maximum of 4.6 MPa (670 psid). Then the pressure load was gradually removed. Unfortunately, the leakage rate instrumentation reached a maximum limit at 3.8 MPa (550 psid) across the seal.

### **Brush Seal LH<sub>2</sub> Tests**

Only configuration 9, a single brush on the high-speed runner, was tested in  $LH_2$ . The procedure for the  $LH_2$  tests was somewhat different from that for the  $LN_2$  tests; primarily, the differences were that the high-shaft-speed data were taken first and the maximum shaft speed was 65 000 rpm.

First, to check out the system and obtain baseline leakage data for the seal, the pressure drop across the seal was varied from 0 to 1.21 MPa (0 to 175 psid) and then decreased to 0 MPa (0 psid) at a shaft speed of 0 rpm. Second, tests were conducted to determine the maximum shaft speed for the high-speed seal runner. At a pressure drop across the seal of 0.52 MPa (75 psid), the speed was increased and data were recorded at 15, 25, 35, 45, 55, 65, and 75 krpm. A maximum shaft speed of 65 000 rpm was chosen to conduct the seal leakage performance tests. At 65 000 rpm the pressure drop across the seal was varied and data were taken in the order of the following conditions: 0.52, 0.69, 0.83, 1.08, 1.21, 1.08, 0.83, 0.69, 0.52, and 0.17 MPa (75, 100, 121, 156, 175, 156, 121, 100, 75, and 25 psid). This speed

and these pressure conditions were selected to match the design conditions of the brush seal to be used in the Advanced Expander Test Bed LH<sub>2</sub> turbopump (ref. 13). The shaft speed was then decreased to 0 rpm and data were taken as the pressure across the seal varied from 0.17 to 1.21 MPa (25 to 175 psid) and then decreased to 0 MPa (0 psid). Data were then taken at shaft speeds of 55 000, 0, 45 000, 35 000, 25 000, 15 000, and 0 rpm at the pressure conditions given in table III(c). Again, each test condition was held for approximately 80 sec.

#### **Calculations**

With the exception of the static performance test data, all data presented are an average of 10 scans. Prior to averaging, each scan was reviewed to ensure that steady-state conditions existed and that averaging was appropriate. The temperatures and pressures at each seal instrumentation station were also averaged. Pressure and temperature differences between stations were calculated from average values. Standard venturi equations were used to calculate flow rates (ref. 14). Actual fluid properties were obtained from the program FLUID (ref. 15). To account for variations in inlet conditions, a parameter called RODPab was calculated. RODPab is the inlet density at station a multiplied by the pressure difference between station a and station b. The power loss across the seal was calculated as the seal leakage mass flow rate multiplied by the enthalpy difference of the fluid across the seal. The measurement uncertainties of key seal performance parameters were calculated and are presented in appendix B.

#### **Prediction Tools**

Computer analysis codes were used to predict the performance of the labyrinth and brush seals. The code used to predict the labyrinth seal performance was developed at Texas A & M University under NASA Contract NAS8-34536. The code calculates mass leakage rate for incompressible fluids in straight-through labyrinth seals using Dodge's formula and interpolating experimental data (ref. 16). In making the leakage predictions with this code, the measured fluid conditions were used for each data point. The fluid properties data required for input were obtained using a program called GASPROPM, a user-friendly front end for the fluid properties routine called FLUID (ref. 15).

Analysis techniques to predict brush seal leakage performance are less developed than those used for labyrinth seal analysis. The brush seal is more difficult to model because of its compliant and permeable nature. Theories developed for crossflow in tube bundles and for flow-through porous mediums have been applied to brush seals to account for the flow resistance of packed, compliant bristles.

Chupp, Holle, and Dowler (ref. 17) developed a simple flow model that uses a single parameter, effective brush thickness, to correlate flow through the seal. The underlying model is based

| (c) | Rmich | seal | in | lionid | hydrogen |
|-----|-------|------|----|--------|----------|
|     |       |      |    |        |          |

| Seal pres | sure drop |   |          | (-) - |        |          | eed, b rpm |        | • • • • • • • • • • • • • • • • • • • • |        |     |
|-----------|-----------|---|----------|-------|--------|----------|------------|--------|-----------------------------------------|--------|-----|
| MPa       | psid      | 0 | 65 000   | 0     | 55 000 | 0        | 45 000     | 35 000 | 25 000                                  | 15 000 | 0   |
| 0.07      | 10        | 1 |          |       |        |          |            |        |                                         |        |     |
| 0.10      | 15        |   |          |       |        | <b>V</b> |            |        |                                         | √ √    | 1   |
| 0.17      | 25        | 1 |          | 1     | √      | 7        | √          | √      | 1                                       | √      | √   |
| 0.34      | 50        | 1 |          |       |        |          |            |        |                                         |        |     |
| 0.52      | 75        | √ | √        | 1     | √      | 1        | 1          | 1      | √                                       | √      | √   |
| 0.69      | 100       | √ | √        |       |        |          |            |        |                                         |        |     |
| 0.83      | 121       |   | <b>√</b> |       |        |          |            |        |                                         |        |     |
| 0.86      | 125       | √ |          | √     | √      | 1        | 1          | √      | √                                       | √      | √   |
| 1.03      | 150       | 1 |          |       | √      | √        | √          | √      | √                                       | √      | √   |
| 1.08      | 156       |   | √        |       |        |          |            |        |                                         |        |     |
| 1.21      | 175       | 1 | √        | 1     | √ _    | 1        | 1          | 1      | 1                                       | √      | 1   |
| 1.08      | 156       |   | V        |       |        |          |            |        |                                         |        |     |
| 1.03      | 150       | √ |          |       | √      | √        | √          | √      | √                                       | √      | √   |
| 0.86      | 125       | 1 |          | √     | √      | √        | √          | 1      | √                                       | √      | √   |
| 0.83      | 121       |   | √        |       |        |          |            |        |                                         |        |     |
| 0.69      | 100       | 4 | √        |       |        |          |            |        |                                         |        |     |
| 0.52      | 75        | √ | √        | √     | √      | 1        | . √        | 1      | √                                       | √      | - √ |
| 0.34      | 50        | 1 |          |       |        |          |            |        |                                         |        |     |
| 0.17      | 25        | 1 | 1        | 1     | √      | √        | √          | √      | √                                       | √ √    | √   |
| 0.10      | 15        |   |          |       | √      | 1        |            | √      | √                                       |        | 1   |
| 0.07      | 10        | 1 |          |       |        |          |            |        |                                         |        |     |
| 0         | 0         | 1 |          |       |        | 1        |            |        |                                         |        | √   |

<sup>&</sup>lt;sup>b</sup>At each shaft speed, data were taken at seal pressure drops as listed from top to bottom; shaft speeds were run in sequence as listed from left to right.

on crossflow through staggered tubes. The simple model reveals the active nature of a brush seal as the pressure drop changes. A more comprehensive flow model was proposed by Hendricks et al. (ref. 18). Hendricks' bulk flow model is also based on theory that deals with crossflows in bare and extended tubes. This brush seal flow model predicts leakage rates by using brush seal geometry, seal pressure drop, and fluid transport properties as inputs. Hendricks reported that the model predicted trends and general levels reasonably, but at low flows and low pressure drops, the model deviated from experimental data provided by Cross Manufacturing.

Another approach, proposed by Chew from Rolls Royce, suggested the use of the Ergun equation:

$$\Delta P = aq + bq^2 \tag{1}$$

where  $\Delta P$  is the pressure drop across the seal; a and b are coefficients; and q is the volumetric flow rate. The equation was originally formulated to predict fluid flow through porous materials. The permeability of the brush seal bristles can be considered a porous medium. However, the bristle compliancy complicates the flow problem and is not captured by the Ergun

equation. On the other hand, in a letter to Hendricks (J.W. Chew, Rolls-Royce Aerospace Group, P.O. Box 31, Derby DE288J, England, October, 27, 1992), Chew's prediction showed good correlation with data provided by Hendricks (ref. 19). Hendricks has further investigated the use of the Ergun equation and has developed relations for the coefficients used in the equation (ref. 20). He proposed that the coefficients be a function of brush porosity, brush thickness, bristle diameter, fluid viscosity, density, and turbulence friction factor. Predictions from Hendricks, Flower, and Howe (ref. 20) showed good correlation with gaseous helium, air, argon, and carbon dioxide brush seal data obtained by Carlile, Hendricks, and Yoder (ref. 19). When Hendricks applied the Ergun equation to data for brush seals tested in liquid nitrogen (ref. 10), the correlation was not as good.

Kudriavtsev and Braun (ref. 21) proposed solving the continuity and momentum equations for flow patterns around sets of pins to simulate flow patterns in brush seals. To reduce computer memory and power requirements necessary to model a full brush seal, Kudriavtsev suggested using representative segments. A few columns and rows of bristles may adequately represent a whole seal if proper boundary conditions are specified. In addition, Kudriavtsev assumed that the first and

last couple rows of bristles for a brush seal of 10 or more rows could be neglected because they tend to spread and do not significantly effect the fluid pressure drop. Kudriavtsev explored this approach and reported that it was feasible. Much work, however, is still needed to fully develop it.

The proposed models have been developed mainly for gas brush seals because gas turbine engines are the prime applications. Consequently, ample gas brush seal data are available. However, little data exist for brush seals operating in liquid environments. Although gradually changing, there are insufficient data to calibrate and validate the brush seal models for liquid applications. Because more experimental data are required, no analytical comparisons are presented.

### Results and Discussion of LN<sub>2</sub> Tests

Temperature, pressure, speed, and leakage rate data for all configurations are presented in appendixes C and D in SI and English units, respectively.

#### Labyrinth Seal Performance

A 12-tooth, 127- $\mu$ m- (0.005-in-.) radial-clearance labyrinth seal was tested in liquid nitrogen to establish a baseline for comparison. The measured and predicted mass leakage rates of the labyrinth seal are shown in figure 11 as a function of the inlet density  $\rho$  multiplied by the pressure drop  $\Delta P$  across the seal for all shaft speeds tested. The pressure drop across the seal was multiplied by the inlet density to account for the variation in the inlet conditions from test to test. The data show no appreciable speed effect on the leakage rate, and the measured and predicted leakage rates are of the same magnitude and trend, increasing with increased  $\rho\Delta P$ .

#### **Single Brush Seal Performance**

The leakage performance of a single brush seal in liquid nitrogen located in position 1 of the seal cartridge is shown in figure 12. Again, mass leakage rate is plotted as a function of the inlet density multiplied by the pressure drop across the seal for all shaft speeds. It is interesting to note that the first leakage rate data taken at 0 rpm is approximately 1.7 times greater than all the other data. This phenomenon was seen in each new configuration and indicates that both a pressure load and shaft rotation are required to seat the seal bristles into their optimum position. Although the leakage data for the different shaft speeds exhibit some variation, there is no distinct speed dependence. However, the leakage rate at the end of the test was approximately double that measured at the beginning, which indicates that wear had occurred. Figure 13 compares the leakage performance of the labyrinth and the brush seals and shows that the single brush seal had a mass leakage rate of onehalf to one-third that of the 12-tooth labyrinth seal with a radial clearance of 127  $\mu m$  (0.005 in.).

Figure 14 shows fluid temperature rise across a single brush seal in liquid nitrogen between stations 1 and 3 as a function of  $\rho\Delta P$  for the shaft speeds tested. As expected, the fluid temperature rise is greater at higher shaft speeds, mainly because of higher frictional heating. The fluid viscous shear forces also generate more heat at higher shaft speeds. The temperature rise decreases for increased  $\rho\Delta P$  because there is more coolant flow to carry the heat away.

The results of the static seal performance test are shown in figure 15 in which leakage rate is plotted as a function of  $\rho\Delta P$ . A pressure drop across the seal of 3.8 MPa (550 psid) was obtained with no evidence of blowout occurring.

The power loss for a single seal in position 1 was calculated as the product of the seal mass leakage rate and the fluid enthalpy change from station 1 to station 2. In figure 16 the power loss is plotted as a function of the shaft speed for several  $\Delta P$  values. Although higher  $\Delta P$  conditions appear to increase power loss slightly, the variation is within the uncertainty of this calculation. The uncertainty is strongly influenced by the sensitivity of enthalpy to temperature changes. Power loss is, however, a function of speed cubed. The maximum power loss measured for a single brush was  $1826 \,\mathrm{W}\,(2.45 \,\mathrm{hp})$  at 35 000 rpm and a pressure drop across the seal of 1.21 MPa (175 psid). Labyrinth seal power loss measurements are not provided for comparison because the thermocouples at station 5 were located in a relatively large cavity and were exposed to environmental heat loads not attributable to the seal.

#### **Staging Effects**

Staging effects on leakage rate are significant, as seen in figure 17. In this figure, the leakage rate at a shaft speed of 5000 rpm is plotted against  $\rho\Delta P$  for a single brush, for two brushes far apart (7.21 mm or 0.284 in.), and for two brushes tightly packed. The leakage rate for two brushes far apart is approximately one-half that of the single brush leakage rate. However, the leakage rate for two brushes tightly packed is approximately three-fourths that for the single brush seal. This phenomenon of two brushes far apart leaking less than two brushes tightly packed occurred at all shaft speeds (5, 15, 25, and 35 krpm). Additional brushes caused the fluid temperature rise across the seal to increase because the added brushes caused more frictional heating. Figure 18 compares the fluid temperature rise between stations 1 and 5 for one, two, and three brushes as a function of  $\rho\Delta P$  at 35 000 rpm. The maximum temperature rise of approximately 53 K (95 R) occurred for three brushes at the lowest  $\rho\Delta P$  value, which is also the lowest flow rate. It is important to note that the fluid temperature measured at station 5 is really that of the seal leakage mixed with the fluid in the exhaust cavity, which tends to be somewhat warmer. Therefore, the actual temperature rise is something less than the values shown in figure 18.

The pressure load distribution in a multistage configuration appears to be affected by shaft speed. Plots of leakage performance versus  $\rho\Delta P$  for individual brushes and for all brushes together in the configuration three brushes evenly spaced are shown in figures 19 and 20 at 0 and 35 000 rpm, respectively. At 0 rpm, the first and second brushes each carried approximately 25 percent of the total pressure drop across the seal, and the third brush seal carried the remaining 50 percent. At 35 000 rpm, each of the three brushes carried approximately equal portions of the total pressure drop. A review of the data at 5, 15, and 25 krpm shows a gradual transition of the pressure load distribution between 0- and 35 000-rpm shaft speeds.

### **Preliminary Wear Data**

Brush seal wear is affected by many parameters: material properties and combination, surface finish, geometry, shaft speed, friction coefficient, shaft rotordynamics, initial interference, and coolant flow. The Inconel 718 rotor had a surface finish of  $0.81 \, \mu m$  (32  $\mu in$ .). Shaft rotordynamics were very good with a nominal seal runner orbit of less than 5  $\mu m$  (0.0002 in.) in diameter. A maximum seal runner orbit diameter of 25  $\mu m$  (0.001 in.) occurred at 35 000 rpm for a short period of time when the pressure drop across the seal was being adjusted. No significant vibration was observed. The maximum shaft speed was 35 000 rpm, which translates to a surface velocity of 93 m/sec (305 ft/sec). Again, the bristle material was Haynes-25.

Seal runner wear did occur as evidenced by the tracks found during posttest inspection. A scanning electron microscope (SEM) photograph of the tracks is shown in figure 21. To measure runner wear, profilometer traces were taken across the axial length of the runner at four circumferential locations: 0°, 90°, 180°, and 270°. The profilometer trace at 0°, taken after testing configuration 4 before any track was reused, is shown in figure 22. The final profilometer trace, taken after testing configuration 7, is shown in figure 23. The maximum groove depth measured was 25 µm (0.0010 in.) and the nominal groove depth measured was 19 µm (0.00075 in.) after 4.31 hr accumulated shaft rotation time. A plot of the maximum groove depth of each track as a function of time is shown in figure 24. The maximum, minimum, and average values of the maximum groove depth measurements are shown. Tracks 1 and 3 show first an increase and then a decrease in groove depth with time. Track 5 shows a decrease in groove depth with time but reveals variations in the depth measurement of 11  $\mu$ m (4.5×10<sup>-4</sup> in.). The other tracks have a variation in the groove depth measurement of approximately  $3 \mu m (1.2 \times 10^{-4} in.)$ . The wear tracks had an axial width up to 1.2 mm (0.049 in.). This is larger than the bristle pack width of 0.76 mm (0.0298 in.). The difference between the bristle pack width and the track width is greater than the measured axial motion of the shaft of 0.51 mm (0.020 in.). Because there was some axial motion so that the brushes did not run over the exact spot on the runner all the time and because the shaft speed varied, it is valuable to look at wear rate in terms of groove area and distance, as shown in figure 25. This view of the wear data shows more consistently an increase in wear with an increase in distance. The maximum distance was 805 km (2.64 million ft).

The bristles also show wear of approximately 25 to 76 µm (0.001 to 0.003 in.). Bristle wear is difficult to quantify because of uncertainty in the bristle bore diameter measurement. An optical comparator was used to measure the inner diameter of the brush seals and, depending on the exact circumferential location and the person taking the reading, variations of 191  $\mu m$  (0.0075 in.) were found. These measurements were also affected by unevenness of the bristles, as shown in figure 26. Early in the test matrix, approximately 10 bristles showed evidence of some melting (see fig. 27). Melted bristles were first found after running high-speed conditions with no  $\Delta P$ across the seal. This implies that some leakage is necessary to cool the bristles and that high-temperature bristle materials may need to be used. Once bristle melting was discovered, these high-speed and no-flow test conditions were discontinued. It also appears that the wear is substantially more on the downstream bristles than on the upstream bristles, as shown in figure 28. The bristles in region A are the downstream bristles that are close to the back washer and show a smearing-type wear. Bristles in region B show little, if any, wear.

### Results and Discussion of LH<sub>2</sub> Tests

#### **Performance Data**

The leakage performance of a single brush in liquid hydrogen at all speeds tested is shown in figure 29 and is compared with the predicted leakage performance of a 12-tooth, 127-µm-(0.005-in.-) radial-clearance labyrinth seal at 0 and 65 000 rpm. Unlike the liquid nitrogen data, the brush seal leakage performance is not significantly better than the predicted labyrinth seal leakage performance, and a speed effect is present. As speed decreased from 65 000 to 35 000 rpm, the leakage rate decreased slightly. Then a jump occurred at 25 000 rpm, with the leakage rate increasing to values approximately 50 percent larger than the leakage rate at 65 000 rpm. As the speed decreased further to 15 000 rpm, the leakage rate again decreased but still remained higher than the data taken at 65 000 rpm. Although no definitive explanation for these observations can be given at this time, possible causes include wearing of the bristles and lifting away of the bristles from the shaft as a result of shaft orbits or aerodynamic effects. Other studies have found that bristle hysteresis and stiffening effects can significantly affect seal performance (ref. 22), and it is likely that these are contributing factors. The final data taken at 0 rpm has leakage rates one-half to one-third of the predicted labyrinth seal leakage rates. More data need to be taken to confirm this result. It is possible that the bristles relaxed and packed themselves more tightly when the pressure drop across the seal was decreased to 0.07 MPa (10 psid).

As shown in figure 30, the fluid temperature rise between stations 1 and 2 at all speeds and  $\rho\Delta P$  values was minimal, with a maximum temperature rise of approximately 11 K (20 R). Although this is substantially less than the temperature rise in liquid nitrogen, it is not surprising. Comparing the nominal inlet conditions of LH<sub>2</sub> and LN<sub>2</sub> reveals that the specific heat of hydrogen is approximately five times greater than that of liquid nitrogen.

The power loss of a single brush seal in liquid hydrogen is shown in figure 31 as a function of shaft speed for two pressure drops across the seal, 1.21 and 0.52 MPa (175 and 75 psid). As observed in the liquid nitrogen data, the higher pressure drop across the seal has a slightly higher power loss and the power loss is a function of speed cubed. The maximum power loss in liquid hydrogen was 2180 W (2.92 hp) and occurred at 65 000 rpm at a pressure drop across the seal of 1.21 MPa (175 psid). As expected, the power loss in liquid nitrogen was greater than in liquid hydrogen largely because of the greater viscosity and lower specific heat of liquid nitrogen. Specifically, the power loss in LN<sub>2</sub> is 1827 W (2.45 hp) and in LH<sub>2</sub> is approximately 634 W (0.85 hp) at 35 000 rpm at a  $\Delta P$  of 1.21 MPa (175 psid).

#### **Preliminary Wear Data**

The bristle and seal runner materials were the same as those used in the liquid nitrogen tests: Haynes-25 bristles and Inconel 718 runner. The shaft rotordynamic excursions were small, with a maximum orbit diameter of 57  $\mu m$  (0.00225 in.) occurring at 65 000 rpm (a surface velocity of 172.9 m/sec or 567.2 ft/sec). It should be noted that during system checkout testing there were two occurrences of momentary overspeeds in excess of 80 000 rpm. A total of 1.8 hr of shaft rotation time was accumulated. This is a linear distance of 869 km (2.85 million ft). Although the accumulated shaft rotation time in liquid hydrogen was less than in the liquid nitrogen tests, the accumulated linear distance was approximately 8 percent more.

Posttest examination revealed no wear of the runner but instead, a deposit of bristle material on the runner (shown in fig. 32). The bristle interference, 127 µm (0.005 in.) radially, had been totally consumed. This result is significantly different from the wear found in LN<sub>2</sub>. However, there were two major differences in the tests. First, hydrogen is a reducing environment and nitrogen is inert. Second, the hydrogen testing was done at shaft speeds nearly double those of the nitrogen testing. Although intuition suggests that the shaft speed is more likely the key factor, further testing is required. An SEM photograph of the bristle tips (fig. 33) shows a smearing type of wear. Also, the outer bristles on each side of the brush pack were bent out axially whereas the bristles towards the center of the brush appeared to be uniformly packed, as shown in figure 34. The

outer bristles also exhibited circumferential bending as well (see fig. 35).

### **Concluding Remarks**

The compliant contacting nature of brush seals gives them a very small effective clearance. Both a pressure load and shaft rotation were required to initially seat the seal bristles in their optimum position. The measured liquid nitrogen (LN<sub>2</sub>) leakage of a single brush seal was one-half to one-third the leakage of a 12-tooth labyrinth seal. Predictions of the labyrinth seal LN<sub>2</sub> leakage were in agreement with the measured data. The leakage performance of a single brush seal in liquid hydrogen (LH<sub>2</sub>) was comparable to that in liquid nitrogen. However, the LH<sub>2</sub> leakage was expected to be less because of the lower density of LH<sub>2</sub>. In comparison with predicted LH<sub>2</sub> leakage performance for a 12-tooth, 127-um- (0.005-in.-) radial-clearance labyrinth seal, the single brush leakage was the same. Also, in LN<sub>2</sub>, leakage did not depend on shaft speed but in LH<sub>2</sub>, a speed dependence was observed. It is possible that significant wear occurred early in the LH2 tests and that the bristles lifted off the rotor. Another possible explanation for this observed speed dependence is that LH2 testing was conducted at higher shaft speeds where shaft orbits were larger and that a clearance opened between the bristles and the runner. This may be combined with a hysteresis effect. Hysteresis effects have been observed in hot gas brush seal studies. During LH2 testing, the pressure load on the seal was not reduced to nearly zero between each shaft speed tested, as done in the LN<sub>2</sub> testing.

As expected, the fluid temperature rise across the seal is a function of the leakagé rate and the shaft speed. A pressure drop across the seal of 3.8 MPa (550 psid) was applied at 0 rpm with no blowout of the seal. The pressure capability of brush seals is certainly a function of the seal geometry and may be quite high. However, further testing is needed at both static and rotating conditions. The power loss in LN<sub>2</sub> was greater than in LH<sub>2</sub> because of the greater viscosity of LN<sub>2</sub>. However, in either fluid the power loss was small: 1827 W (2.45 hp) in LN<sub>2</sub> and 634 W (0.85 hp) in LH<sub>2</sub> at 35 000 rpm at a pressure drop across the seal of 1.21 MPa (175 psid). The maximum power loss in LH<sub>2</sub> was 2180 W (2.92 hp) at 65 000 rpm at a pressure drop across the seal of 1.21 MPa (175 psid).

Staging effects are significant. In  $LN_2$ , two brushes far apart (spaced 7.21 mm or 0.284 in.) leaked less than two brushes tightly packed. In the three-brushes-evenly-spaced configuration, the pressure load was not always split evenly between the seals. The split of the pressure load seemed to depend on the shaft speed. Further testing is needed to fully understand staging effects.

After accumulating 4.31 hr of rotordynamically stable shaft rotation time in liquid nitrogen, the Inconel 718 shaft had a maximum groove depth of 25 µm (0.001 in.), and the Haynes-25

bristles had worn 25 to 76  $\mu$ m (0.001 to 0.003 in.). However, in LH<sub>2</sub> the bristle wear was substantially worse, consuming the entire initial radial interference of 127  $\mu$ m (0.005 in.) after accumulating 1.8 hr of shaft rotation time. It is important to recognize that the time at which the bristle wear occurred during this 1.8 hr is unknown. The greater wear in LH<sub>2</sub> may be attributed to the higher shaft speeds, an effect of the hydrogen environment, or both. Because bristle material transferred onto the runner and there was no wear of the runner in liquid hydrogen, it is possible that the higher shaft speeds used in the LH<sub>2</sub> testing raised the bristle temperature enough to substantially reduce its shear strength, allowing the bristle material to smear. It is also possible that hydrogen, a reducing agent, acts

as a catalyst to weld the similar materials within the brush and rotor materials. Further testing is needed to fully understand the wear mechanisms and to investigate several runner coatings that may alleviate the wear problem in  $LH_2$ . Additional leakage performance data are also needed to calibrate and validate analytical models of brush seals for cryogenic applications.

Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohio, April 10, 1996



Figure 1.—Cryogenics Components Laboratory (CCL) at the NASA Lewis Research Center.

### Figure 2.—Brush seal liquid hydrogen (LH<sub>2</sub>) test piping. (All pressures are in psig unless noted.)





Figure 3.—Cross section of Cryogenic Brush Seal Tester. (Some parts shown out of rotation for clarity.)



Figure 4.—Cryogenic Brush Seal Tester installation.



Figure 5.—Cryogenic Brush Seal Tester during test.



Figure 6.—Typical brush seal.



Figure 7.—Nominal brush seal and runner geometry. (Not to scale; all dimensions are in mm (in.).)





Figure 8.—Location of brush seal positions and instrumentation stations. Low-speed runner shown. (a) Axial locations. (b) Circumferential locations. View looking from seal end.



Figure 9.—Labyrinth seal geometry; material, Inconel 718. Dimensions in mm (in.).



Figure 10.—Control panel for cryogenic brush seal testing.



Figure 11.—Comparison of predicted and measured average  $LN_2$  leakage rate through 12-tooth labyrinth seal as function of inlet density times pressure drop across seal for configuration 1 at several shaft speeds. Seal radial clearance, 127- $\mu$ m (0.005-in.); seal runner outside diameter, 50.794 mm (1.9998 in.).



Figure 12.—Average LN<sub>2</sub> leakage rate for single brush seal with initial radial interference of 0.102 mm (0.004 in.) as function of inlet density times pressure drop across seal for configuration 2 at all speeds tested.



Figure 13.—Comparison of 12-tooth labyrinth seal and single brush seal LN<sub>2</sub> leakage performance. Labyrinth seal radial clearance, 0.127- $\mu$ m (0.005-in.); brush seal initial radial interference, 0.102 mm (0.004 in.).



Figure 14.—Effect of speed on LN<sub>2</sub> temperature rise across single brush seal (stations 1 to 3) as function of inlet density times pressure drop across seal for configuration 2.



Figure 15.—LN<sub>2</sub> leakage rate as function of pressure drop across single brush seal during static performance test for configuration 8 at 0 rpm.



Figure 16.—Power loss to fluid across single brush seal in  $LN_2$  as function of shaft speed for configuration 2.



Figure 17.—Comparison of  ${\rm LN}_2$  leakage rate of one- and two-brush seals in configurations 2 to 4 at 5000 rpm.



Figure 18.—Effects of staging on fluid temperature rise across seal in  $LN_2$  for configurations 2 to 5 at 35 000 rpm.



Figure 19.—LN<sub>2</sub> leakage performance of each stage and of all stages for three brushes evenly spaced (configuration 7) at 0 rpm.



Figure 20.—LN<sub>2</sub> leakage performance of each stage and of all stages for three brushes evenly spaced (configuration 7) at 35 000 rpm.



Figure 21.—Scanning electron microscope (SEM) photographs of wear tracks in low-speed runner after testing configurations 1 to 7.



Figure 24.—Maximum, minimum, and average groove depth of brush seal wear tracks on low-speed runner after testing configurations 1 to 8 in LN<sub>2</sub> as function of accumulated time of shaft rotation.



Figure 25.—Average groove area of brush seal wear tracks after testing configurations 1 to 8 in LN<sub>2</sub> as function of rotation distance.



Figure 26.—Posttest brush seal showing unevenness of bristles.



Figure 27.—Melted bristle tip.





Figure 28.—Bristle wear in LN<sub>2</sub> tests; substantial wear shown on downstream bristles (region A) which were closer to back washer.



Figure 29.—Comparison of LH $_2$  leakage performance of single brush seal at various speeds and leakage predictions for 12-tooth, 0.127- $\mu$ m- (0.005-in.-) radial-clearance labyrinth seal at 0 and 65 000 rpm as function of inlet density times pressure drop across seal for configuration 9.



Figure 30.—Temperature rise across single brush seal in  $LH_2$  as function of inlet density times pressure drop across seal for configuration 9 at all shaft speeds.



Figure 31.—Power loss to fluid across brush seal in LH<sub>2</sub> as function of shaft speed for pressure drops across seal of 0.52 and 1.21 MPa (75 and 175 paid). Power loss is  $\dot{m}$  ( $h_2 - h_1$ ) in watts ( $h_2 = (778/550)\dot{m}(h_2 - h_1)$ ) where  $\dot{m}$  is mass flow rate through seal, kg/sec ( $lb_m/sec$ ); and  $h_2$  and  $h_1$  are the fluid enthalpy at stations 1 and 2, J/kg (Btu/lb).



Figure 32.—Bristle material transferred to seal runner after testing in LH $_{\!\!\! 2.}$  Configuration 9. Magnification 510.



Figure 33.—Smearing type wear of Haynes-25 bristle tips after testing in LH<sub>2</sub>. Configuration 9. Magnification 233.



Figure 34.—Outer bristles of brush seal bent axially after testing in LH<sub>2</sub>. Configuration 9.



Figure 35.—Outer bristles of brush seal exhibiting tip bending in circumferential direction after testing in  $LH_2$ . Configuration 9.

# Appendix A

# **Instrument Description List**

| Chan.<br>No. | No. | Name             |                            | Location/Description                                                                  |
|--------------|-----|------------------|----------------------------|---------------------------------------------------------------------------------------|
|              |     |                  | 0-3000 PSIG                | GH2 SUPPLY PRESSURE FROM TUBE TRAILER AT CELL                                         |
| 1            |     | GHIN             | 0-3000 PSIG                | GH2 PRESSURE UPSTREAM OF MAIN SUPPLY REGULATOR FH269 IN CELL                          |
| 2<br>3       |     | GHMNVN           | 0-2000 PSIG                | GH2 MAIN SUPPLY LINE VENTURI PRESSURE                                                 |
|              |     | GHMVDP           | 0-50 PSID                  | GH2 MAIN SUPPLY LINE VENTURI DELTA P                                                  |
| 4            |     |                  | 0-2000 PSIG                | GH2 TURBINE SUPPLY LINE VENTURI PRESSURE                                              |
| 5            |     | GHTBVN           | 0-100 PSID                 | GH2 TURBINE SUPPLY LINE DELTA: P                                                      |
| 6            |     | GHTVDP           |                            | GH2 TURBINE SUPPLY LINE REGULATOR OUTLET PRESSURE                                     |
| 7            |     |                  | 0-2000 PSIG                | GH2 TURBINE INLET PRESSURE AT RIG                                                     |
| 8            |     | GHTBIN           | 0-2000 PSIG                | GH2 TORDINE INDET PRESSURE AT RIG<br>GH2 BALANCE PISTON TURBINE SIDE VENTURI PRESSURE |
| 9            |     | GHBTVN           | 0-2000 PSIG                | GH2 BALANCE PISION TURBINE SIDE VENTURI DELTA P                                       |
| 10           |     | GHBTDP           | 0-50 PSID                  | GH2 BALANCE PISTON TURBINE SIDE VENTORY DEBTA F                                       |
| 11           |     |                  | 0-2000 PSIG                | GH2 BALANCE PISTON SEAL SIDE VENTURI PRESSURE                                         |
| 12           |     | GHBSVN           | 0-2000 PSIG                | GH2 BALANCE PISTON SEAL SIDE VENTURI DELTA P                                          |
| 13           |     | GHBSDP           | 0-10 PSID<br>0-2000 PSIG   | GH2 BALANCE PISTON SEAL SIDE INLET PRESSURE AT RIG                                    |
| 14           |     |                  |                            | GH2 TURBINE NOZZLE INLET PRESSURE                                                     |
| 15           |     | GHTNIN           | 0-1000 PSIG                | GH2 TURBINE NOZZLE OUTLET CAVITY PRESSURE                                             |
| 16           |     | GHTNOC           | 0-1000 PSIG                | GH2 TURBINE ROTOR OUTLET CAVITY PRESSURE                                              |
| 17           |     | GHROUT           | 0-1000 PSIG<br>0-1000 PSIG | GH2 TURBINE OUTLET TORUS PRESSURE                                                     |
| 18           |     |                  | 0-1000 PSIG                | GH2 TURBINE NOZZLE OUTLET TIP PRESSURE                                                |
| 19           |     | GHTNOT           | 0-1000 PSIG                | GH2 TURBINE NOZZLE OUTLET HUB PRESSURE                                                |
| 20           |     | GHTNOH           | 0-1000 PSIG                | GH2 TURBINE ROTOR OUTLET TIP PRESSURE                                                 |
| 21           |     | GHROT            | 0-1000 PSIG                | GH2 TURBINE ROTOR OUTLET HUB PRESSURE                                                 |
| 22           |     | GHROH            | 0-1000 PSIG                | GH2 TURBINE OUTLET LINE PRESSURE 1                                                    |
| 23           |     | GHTO1            | 0-1000 PSIG                | GH2 TURBINE OUTLET LINE PRESSURE 2                                                    |
| 24           |     | GHTO2            | 0-2000 PSIG                | GH2 BALBANCE PISTON OUTLET LINE PRESSURE                                              |
| 25           |     | GHBPO            | 0-3000 PSIG                | LH2 TANK H-50 PRESSURE                                                                |
| 26           |     | PRTANK           | 0-2000 PSIG                | LH2 MAIN SUPPLY LINE VENTURI PRESSURE                                                 |
| 27           |     | LHMNVN           | 0-300 PSID                 | LH2 MAIN SUPPLY LINE VENTURI DELTA P                                                  |
| 28           |     | LHMVDP<br>LHTBVN | 0-300 PSID<br>0-2000 PSIG  | LH2 TURBINE SIDE BEARING SUPPLY LINE VENTURI PRESSURE                                 |
| 29           |     | LHTBDP           | 0-100 PSID                 | LH2 TURBINE SIDE BEARING SUPPLY LINE VENTURI DELTA P                                  |
| 30<br>31     |     | LHSBVN           | 0-2000 PSIG                | LH2 SEAL SIDE BEARING SUPPLY LINE VENTURI PRESSURE                                    |
| 32           |     | LHSBDP           | 0-2000 F51G                | LH2 SEAL SIDE BEARING SUPPLY LINE VENTURI DELTA P                                     |
| 32           |     | LHSIVN           | 0-2000 PSIG                | LH2 BRUSH SEAL INLET LINE VENTURI PRESSURE                                            |
| 34           |     | LHSIDP           | 0-100 PSID                 | LH2 BRUSH SEAL INLET LINE VENTURI DELTA P                                             |
| 35           |     | LHTBI            | 0-2000 PSIG                | LH2 TURBINE SIDE BEARING SUPPLY LINE INLET PRESSURE AT RIG                            |
| 36           |     | LHSBI            | 0-2000 PSIG                | LH2 SEAL SIDE BEARING SUPPLY LINE INLET PRESSURE AT RIG                               |
| 37           |     | LHSI             | 0-2000 PSIG                | LH2 BRUSH SEAL INLET LINE PRESSURE AT RIG                                             |
| 38           |     | LHSBYI           | 0-2000 PSIG                | LH2 BRUSH SEAL CHILL DOWN BYPASS LINE INLET PRESSURE                                  |
| 39           |     |                  |                            |                                                                                       |
| 40           |     | LHTBO            | 0-1000 PSIG                | LH2 TURBINE SIDE BEARING OUTLET LINE PRESSURE                                         |
| 41           |     | LHSBO            | 0-2000 PSIG                | LH2 SEAL SIDE BEARING OUTLET LINE PRESSURE                                            |
| 42           |     | LHSO             | 0-2000 PSIG                | LH2 BRUSH SEAL OUTLET LINE PRESSURE                                                   |
| 43           |     | LHSLV1           | 0-2000 PSIG                | LH2 BRUSH SEAL LEAKAGE OUTLET LINE VENTURI PRESSURE 1                                 |
| 44           |     | LHSDP1           | 0-10 PSID                  | LH2 BRUSH SEAL LEAKAGE OUTLET LINE VENTURI DELTA P 1                                  |
| 4.5          |     | LHSLV2           | 0-2000 PSIG                | LH2 BRUSH SEAL LEAKAGE OUTLET LINE VENTURI PRESSURE 2                                 |
| 46           |     | LHSDP2           | 0-5 PSID                   | LH2 BRUSH SEAL LEAKAGE OUTLET LINE VENTURI DELTA P 2                                  |
| 47           |     |                  |                            |                                                                                       |
| 48           |     | GHTOTT           | 360-600 R                  | GH2 TURBINE OUTLET TORUS TOEMPERATURE                                                 |
| 49           |     | GHBPOT           | 100-600 R                  | GH2 BALANCE PISTON OUTLET LINE TEMPERATURE                                            |
| 50           |     | GHMVT            | 360-600 R                  | GH2 MAIN SUPPLY LINE VENTURI TEMPERATURE                                              |
| 51           |     | GHTVT            | 360-600 R                  | GH2 TURBINE SUPPLY LINE VENTURI TEMPERATURE                                           |
| 52           |     | GHTIT            | 360-600 R                  | GH2 TURBINE SUPPLY LINE INLET TEMPERATURE AT RIG                                      |
| 53           |     | GHBTVT           | 360-600 R                  | GH2 BALANCE PISTON TURBINE SIDE VENTURI TEMPERATURE                                   |
| 54           |     | GHBSVT           | 360-600 R                  | GH2 BALANCE PISTON SEAL SIDE VENTURI TEMPERATURE                                      |
|              |     |                  |                            |                                                                                       |

| Escor<br>Chan.<br>No. | FM-tape<br>Chan.<br>No. |                | Expected<br>Engineering<br>Units Range | Location/Description                                                                         |
|-----------------------|-------------------------|----------------|----------------------------------------|----------------------------------------------------------------------------------------------|
| 55                    |                         | GHTOT1         | 100-600 R                              | GH2 TURBINE OUTLET LINE TEMPERATURE 1                                                        |
| 56                    |                         | GHTOT2         | 100-600 R                              | GH2 TURBINE OUTLET LINE TEMPERATURE 2                                                        |
| 57                    |                         | LHMVT          | 36-600 R                               | LH2 MAIN SUPPLY LINE VENTURI TEMPERATURE                                                     |
| 58                    |                         | LHTBVT         | 36-600 R                               | LH2 TURBINE SIDE BEARING SUPPLY LINE VENTURI TEMPERATURE                                     |
| 59                    |                         | LHSBVT         | 36-600 R                               | LH2 SEAL SIDE BEARING SUPPLY LINE VENTURI TEMPERATURE                                        |
| 60                    |                         | LHSIVT         | 36-600 R                               | LH2 BRUSH SEAL INLET LINE VENTURI TEMPERATURE                                                |
| 61                    |                         | LHTBIT         | 36-600 R                               | LH2 TURBINE SIDE BEARING SUPPLY LINE INLET TEMPERATURE AT RIG                                |
| 62                    |                         | LHSBIT         | 36-600 R                               | LH2 SEAL SIDE BEARING SUPPLY LINE INLET TEMPERATURE AT RIG                                   |
| 63                    |                         | LHSIT          | 36-600 R                               | LH2 BRUSH SEAL INLET LINE TEMPERATURE AT RIG                                                 |
| 64                    |                         | LHSBYT         | 36-600 R                               | LH2 BRUSH SEAL CHILLDOWN LINE INLET TEMPERATURE AT RIG                                       |
| 65                    |                         | TIMBOM         | 26 600 B                               | LH2 TURBINE SIDE BEARING OUTLET LINE TEMPERATURE AT RIG                                      |
| 66                    |                         | LHTBOT         | 36-600 R                               | (REDUNDANT THERMOCOUPLE USED FOR ABORT)                                                      |
| 67                    |                         | LHSBOT         | 36-600 R                               | LH2 SEAL SIDE BEARING OUTLET LINE TEMPERATURE AT RIG (REDUNDANT THERMOCOUPLE USED FOR ABORT) |
| 68                    |                         | LHSOT          | 36-600 R                               | LH2 BRUSH SEAL OUTLET LINE TEMPERATURE AT RIG                                                |
| 69                    |                         | LHSLT1         | 36-700 R                               | LH2 BRUSH SEAL LEAKAGE OUTLET LINE VENTURI TEMPERATURE 1                                     |
| 70                    |                         | LHSLT2         | 36-700 R                               | LH2 BRUSH SEAL LEAKAGE OUTLET LINE VENTURI TEMPERATURE 2                                     |
| 71                    |                         |                | 36-600 R                               | SHORTED INPUT TO INDICATE REFERENCE TEMPERATURE                                              |
| 72                    |                         | PST1A          | 0-2000 PSIG                            | PRESSURE AT STATION 1 - 11 DEG., 15 MIN.                                                     |
| 73                    |                         | PST1B          | 0-2000 PSIG                            | PRESSURE AT STATION 1 - 101 DEG., 15 MIN.                                                    |
| 74                    |                         | PST1C          | 0-2000 PSIG                            | PRESSURE AT STATION 1 - 191 DEG., 15 MIN. PRESSURE AT STATION 1 - 281 DEG., 15 MIN.          |
| 75<br>76              |                         | PST1D<br>PST2E | 0-2000 PSIG<br>0-2000 PSIG             | PRESSURE AT STATION 2 - 45 DEG.                                                              |
| 77                    |                         | PST2F          | 0-2000 PSIG                            | PRESSURE AT STATION 2 - 225 DEG.                                                             |
| 78                    |                         | PST3G          | 0-2000 PSIG                            | PRESSURE AT STATION 3 - 90 DEG.                                                              |
| 76<br>79              |                         | PST3H          | 0-2000 PSIG                            | PRESSURE AT STATION 3 - 270 DEG.                                                             |
| 80                    |                         | PST4A          | 0-2000 PSIG                            | PRESSURE AT STATION 4 - 11 DEG., 15 MIN.                                                     |
| 81                    |                         | PST4C          | 0-2000 PSIG                            | PRESSURE AT STATION 4 - 191 DEG., 15 MIN.                                                    |
| 82                    |                         | PST5A          | 0-2000 PSIG                            | PRESSURE AT STATION 5 - 11 DEG., 15 MIN.                                                     |
| 83                    |                         | PST5B          | 0-2000 PSIG                            | PRESSURE AT STATION 5 - 101 DEG., 15 MIN.                                                    |
| 84                    |                         | PST5C          | 0-2000 PSIG                            | PRESSURE AT STATION 5 - 191 DEG., 15 MIN.                                                    |
| 85                    |                         | PST5D          | 0-2000 PSIG                            | PRESSURE AT STATION 5 - 281 DEG., 15 MIN.                                                    |
| 86                    |                         | TST1A          | 36-800 R                               | TEMPERATURE AT STATION 1 - 78 DEG., 45 MIN.                                                  |
| 87                    |                         | TST1B          | 36-800 R                               | TEMPERATURE AT STATION 1 - 168 DEG., 45 MIN.                                                 |
| 88                    |                         | TST1C          | 36-800 R                               | TEMPERATURE AT STATION 1 - 258 DEG., 45 MIN.                                                 |
| 89                    |                         | TST1D          | 36-800 R                               | TEMPERATURE AT STATION 1 - 348 DEG., 45 MIN.                                                 |
| 90                    |                         | TST2E          | 36-800 R                               | TEMPERATURE AT STATION 2 - 135 DEG.                                                          |
| 91                    |                         | TST2F          | 36-800 R                               | TEMPERATURE AT STATION 2 - 315 DEG.                                                          |
| 92                    |                         | TST3G          | 36-800 R                               | TEMPERATURE AT STATION 3 - 0 DEG.                                                            |
| 93                    |                         | TST3H          | 36-800 R                               | TEMPERATURE AT STATION 3 - 180 DEG.                                                          |
| 94                    |                         | TST4A          | 36-800 R                               | TEMPERATURE AT STATION 4 - 78 DEG., 45 MIN.                                                  |
| 95                    |                         | TST4C          | 36-800 R<br>36-800 R                   | TEMPERATURE AT STATION 4 - 258 DEG., 45 MIN. TEMPERATURE AT STATION 5 - 78 DEG., 45 MIN.     |
| 96<br>97              |                         | TST5A<br>TST5B | 36-800 R                               | TEMPERATURE AT STATION 5 - 168 DEG., 45 MIN.                                                 |
| 98                    |                         | TST5C          | 36-800 R                               | TEMPERATURE AT STATION 5 - 258 DEG., 45 MIN.                                                 |
| 99                    |                         | TST5D          | 36-800 R                               | TEMPERATURE AT STATION 5 - 348 DEG., 45 MIN.                                                 |
| 100                   | 2                       | SP1            | 0-50000 RPM                            | SPEED PICKUP OFF OF BALANCE PISTON 1                                                         |
| 101                   | 3                       | SP2            | 0-50000 RPM                            | SPEED PICKUP OFF OF BALANCE PISTON 2                                                         |
| 102                   | -                       | GHMNFL         | 0-0.3 LB/S                             | GH2 FLOW THROUGH MAIN SUPPLY LINE VENTURI (CALC.)                                            |
| 103                   |                         | GHTFL          | 0-0.1 LB/S                             | GH2 FLOW THROUGH TURBINE SUPPLY LINE VENTURI (CALC.)                                         |
| 104                   |                         | GHBTFL         | 0-0.2 LB/S                             | GH2 FLOW THROUGH BALANCE PISTON TURBINE SIDE SUPPLY VENTURI (CALC.)                          |
| 105                   |                         | GHBSFL         | 0-0.2 LB/S                             | GH2 FLOW THROUGH BALANCE PISTON SEAL SIDE SUPPLY LINE VENTURI (CALC.)                        |
| 106                   |                         | LHMNFL         | 0-0.5 LB/S                             | LH2 FLOW THROUGH MAIN SUPPLY LINE VENTURI (CALC.)                                            |

| Escor<br>Chan. | FM-tape<br>Chan. |         | Expected<br>Engineering |                                                                   |
|----------------|------------------|---------|-------------------------|-------------------------------------------------------------------|
| No.            |                  | Name    |                         | Location/Description                                              |
| 107            |                  | LHTBFL  |                         | LH2 FLOW THROUGH TURBINE SIDE BEARING SUPPLY LINE VENTURI (CALC.) |
| 108            |                  | LHSBFL  |                         | LH2 FLOW THROUGH SEAL SIDE BEARING SUPPLY LINE VENTURI (CALC.)    |
| 109            |                  | LHSFL   | 0-0.45 LB/S             | LH2 FLOW THROUGH BRUSH SEAL SUPPLY LINE VENTURI (CALC.)           |
| 110            |                  | LHSLF1  | 0-0.2 LB/S              | LH2 FLOW THROUGH BRUSH SEAL LEAKAGE LINE VENTURI 1 (CALC.)        |
| 111            |                  | LHSLF2  | 0-0.2 LB/S              | LH2 FLOW THROUGH BRUSH SEAL LEAKAGE LINE VENTURI 2 (CALC.)        |
|                |                  | TESC. 1 | 0-2400 PSIG             | TESCOM REGULATOR PRESSURE FOR VALVE 269                           |
|                |                  | TESC.2  | 0-2400 PSIG             | TESCOM REGULATOR PREESURE FOR VALVE 275                           |
|                |                  | DELTA S | 0-1000 PSID             | SEAL PISTON DELTA P - DIFFERENCE BETWEEN CH 72 AND CH 82          |
|                |                  | DELTA B | 0-1000 PSID             | BALANCE PISTON DELTA P - DIFFERENCE BETWEEN CH 14 AND CH 11       |
|                |                  | HYDPP   | 0-5000 PSIG             | HYDRAULIC PUMP PRESSURE                                           |
|                |                  | HYDPT   | TYPE T                  | HYDRAULIC PUMP TEMPERATURE                                        |
|                | 9                | B #4    | 10-60 MIL               | 40 DEGREE SEAL END PROXIMITY PROBE                                |
|                | 10               | B #5    | 10-60 MIL               | 130 DEGREE SEAL END PROXIMITY PROBE                               |
|                | 11               | B #6    | 10-60 MIL               | 220 DEGREE SEAL END PROXIMITY PROBE                               |
|                |                  | H-27 P  | 0-30 PSIG               | H-27 TRAILER PRESSURE                                             |
|                |                  | H2 P    | 0-2400 PSIG             | H2 TUBE TRAILER PRESSURE                                          |
|                | 1                | BPAPP   | 15-80 MIL               | BALANCE PISTON AXIAL PROXIMITY PROBE                              |
|                | 5                | ZDRASE  | 0-20 G                  | ZERO DEGREE RADIAL SEAL END ACCELERATION                          |
|                | 14               | IRIG-B  |                         | TIME CODE SIGNAL                                                  |

Note: Some instrumentation ranges were changed for specific configurations.

## Appendix B

## **Uncertainty Analysis**

An uncertainty analysis was performed to determine the potential error in key experimental parameters: seal leakage rate, mean pressure at each station, and pressure drop across the seal. The procedure used to determine the uncertainty in the experimental results follows that described by Davidian, Dieck, and Chuang (ref. 23).

The total uncertainty of a measurement is caused by a random (precision) error and a fixed, or systematic (bias), error. The sources of error can be divided into three categories: calibration, data acquisition, and data reduction. No bias errors, however, were included in the analysis because the setup procedure (i.e., electronic calibration) was considered sufficient to make such errors negligible. Furthermore, data reduction errors were assumed to be small. Consequently, only precision errors due to instrumentation calibration and data acquisition were considered.

The precision of the reported leakage rate is a function of several measured parameters because the measurement was obtained using a venturi meter. The flow equation used to calculate the leakage rate m is

$$m = \frac{1}{4} \frac{c_{\nu} \pi d_2^2}{\sqrt{1 - \left(\frac{d_2}{d_1}\right)^4}} \sqrt{2\rho \Delta p}$$
 (A1)

where  $c_{\nu}$  is the venturi flow coefficient;  $d_2$  is the throat diameter;  $d_1$  is the main tube diameter;  $\rho$  is the density;  $\Delta p$  is the pressure drop across the venturi. By inspecting equation (A1), the precision index, which propagates the errors occurring in measured parameters to the calculated parameter through the use of influence coefficients, can be defined as

$$S_{m} = \left[ \left( \frac{\partial m}{\partial d_{1}} S_{d_{1}} \right)^{2} + \left( \frac{\partial m}{\partial d_{2}} S_{d_{2}} \right)^{2} + \left( \frac{\partial m}{\partial \Delta p} S_{\Delta p} \right)^{2} + \left( \frac{\partial m}{\partial P} S_{P} \right)^{2} + \left( \frac{\partial m}{\partial T} S_{T} \right)^{2} \right]^{1/2}$$
(A2)

where  $S_m$  is the precision index. The primary measurements are the main tube diameter  $d_1$ , throat diameter  $d_2$ , pressure drop across the venturi  $\Delta p$ , static pressure P, and temperature T. Static pressure and temperature are introduced because density

was determined from these two properties and not measured directly. The associated influence coefficients can be determined by differentiating the flow equation with respect to the primary parameters:

$$\frac{\partial m}{\partial d_1} = -\frac{c_\nu \pi d_2^6}{2d_1^5} \sqrt{2\rho \Delta p} \left[ 1 - \left( \frac{d_2}{d_1} \right)^4 \right]^{-3/2} \tag{A3}$$

$$\frac{\partial m}{\partial d_2} = \frac{c_v \pi d_2}{2} \sqrt{2\rho \Delta p} \left[ 1 - \left( \frac{d_2}{d_1} \right)^4 \right]^{-3/2} \tag{A4}$$

$$\frac{\partial m}{\partial \Delta p} = \frac{1}{4} \frac{c_{\nu} \pi d_2^2 \rho}{\sqrt{2\rho \Delta p}} \left[ 1 - \left( \frac{d_2}{d_1} \right)^4 \right]^{-1/2} \tag{A5}$$

$$\frac{\partial m}{\partial \rho} = \frac{1}{4} \frac{c_{\nu} \pi d_2^2 \Delta p}{\sqrt{2\rho \Delta p}} \left[ 1 - \left( \frac{d_2}{d_1} \right)^4 \right]^{-1/2}$$
 (A6)

Two additional influence coefficients are required to relate density to static pressure and temperature. Simple chain rule provides these relationships:

$$\frac{\partial m}{\partial P} = \frac{\partial m}{\partial \rho} \frac{\partial \rho}{\partial P} \tag{A7}$$

$$\frac{\partial m}{\partial T} = \frac{\partial m}{\partial \rho} \frac{\partial \rho}{\partial T} \tag{A8}$$

Using a fluids properties program called GASP (ref. 24), the partials  $\partial \rho/\partial P$  and  $\partial \rho/\partial T$  were obtained by perturbing the input pressure and temperature and observing the effect on density.

Following the procedure described by Davidian (ref. 23), the uncertainty U is then determined by applying Student's t value  $t_{95}$  to the precision index  $S_m$  to assign a confidence level to the numerical value. The relationship

$$U_{99} = t_{95} * S_m \tag{A9}$$

was used to approximate 99 percent coverage.

#### TABLE IV.—UNCERTAINTY OF EXPERIMENTAL LEAKAGE RATE FOR SEAL CONFIGURATIONS

| Seal               | Config-<br>uration                   | Leakage ra                                                                                                                   | ate precision,                                                                                                              |
|--------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| :                  |                                      | Venturi 1                                                                                                                    | Venturi 2                                                                                                                   |
| Labyrinth<br>Brush | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 10.5 to 1.0<br>12.0 to 2.7<br>140 to 2.7<br>117 to 2.7<br>78.5 to 3.5<br>95 to 5.8<br>3.2 to 2.8<br>2.7 to 2.7<br>3.5 to 3.3 | 3.4 to 1.0<br>10.2 to 2.1<br>2.3 to 2.1<br>3.6 to 2.1<br>3.5 to 2.1<br>3.3 to 2.1<br>3.0 to 2.2<br>2.1 to 2.1<br>3.4 to 3.1 |

TABLE V.—AVERAGE PRESSURE MEASUREMENT UNCERTAINTY AT EACH STATION

| Station | measi | e pressure<br>urement<br>rtainty |
|---------|-------|----------------------------------|
|         | MPa   | psi                              |
| 1       | 0.008 | 1.1                              |
| 2       | .043  | 6.2                              |
| 3       | .026  | 3.8                              |
| 4       | .068  | 9.8                              |
| 5       | .011  | 1.6                              |

TABLE VI.—MEASUREMENT UNCERTAINTY OF PRES-SURE DROP BETWEEN STATIONS

| Stations |       | rement<br>ainty of<br>re drop |
|----------|-------|-------------------------------|
|          | MPa   | psi                           |
| 1 to 2   | 0.033 | 4.8                           |
| 1 to 3   | .028  | 4.1                           |
| 1 to 5   | .014  | 2.1                           |
| 2 to 4   | .046  | 6.7                           |
| 2 to 5   | .030  | 4.4                           |
| 4 to 5   | .047  | 6.8                           |

The uncertainty of the experimental leakage rate for the seal configurations are presented as a percent of the measured value in table IV. Uncertainty varied for each seal configuration because of the changes in the hardware used to measure leakage rates. Venturi meters and the differential pressure transducers were changed during the test program to better match the leakage characteristics of the particular seal being tested. The intent was to minimize uncertainty in the results. Furthermore, a pair of venturi meters, located in series and downstream of the test seal, were used to provide redundancy. The table includes the uncertainty for each venturi measurement. In addition, a range of uncertainty is given for each case. The uncertainty at low- and high-pressure drops across the seal is reported. Although most of the cases showed small variation, venturi meter 1 for seal configurations 3 through 6 incurred high uncertainty because of the differential pressure transducer used to measure the pressure gradient across the venturi meter. The transducer had a high nonlinearity error associated with it. It was replaced for later tests.

The uncertainty of the mean pressure at each station, which was the average of four or two separate pressure transducers located at different positions around the circumference of the seal, were also determined and are displayed in table V. The uncertainty of the measured pressure drop across the seal is also important. The pressure drop was the difference between the average of two sets of pressure transducers; each set was located at different axial stations. Table VI presents the uncertainty of the measured pressure difference between each station. Although most of the leakage rate data are plotted against the pressure drop measured between stations 1 and 5, some data are not. Thus, the uncertainty in the pressure difference measurement between each station is provided to be complete. In general, the uncertainty of the measured mean and differential pressures is reasonable.

## Appendix

## SI Units Data Tables-

BAROMETER: 98.839 kPa CELL2 CC TEST FACILITY: CRYOGENIC APPLICATIONS SEALS FOR BRUSH RESEARCH PROGRAM:

DELTA-F STA 1-5 (MPd) 0.000 0.110 0.1110 0.1182 0.1182 0.1182 0.1183 0.1183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.01 AVERAGE LEAKAGE RATE (Kg/S) AVERAGE SHAFT SPEED (REV/S) AVG TEMP STATION 5 991.48 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57 888.33.57  $\Xi$ in position -AVG TEMP STATION 1 88.19 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883.70 883  $\Xi$ Single brush AVG PRESS STATION 5 (MPa) AVG PRESS STATION 1 N (MPa) CONFIGURATION NO. FLUID: NITROGEN RDG AVG SCANS A NO COLOR SE SECONO COLOR SE SE 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 11226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226 12226

BAROMETER: 98.839 KPa

Single brush in position 1 2 CONFIGURATION NO.

| DELTA-P<br>STA 1-5<br>(MPd)          | 0.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AVERAGE<br>LEAKAGE<br>RATE<br>(Kg/S) | 0.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AVERAGE<br>SHAFT<br>SPEED<br>(REV/S) | 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AVG TEMP<br>STATION 5<br>(K)         | 100<br>102.33<br>105.53<br>102.33<br>888.888888888888.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03<br>103.03 |
| AVG TEMP<br>STATION 1<br>(K)         | 99.09<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24<br>1022.24                                                                                                           |
| AVG PRESS<br>STATION 5<br>(MPa)      | 44.0.0.0.0.444444.0.0.0.40.0.0.444444.0.0.044444.0.0.0444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| N<br>AVG PRESS<br>STATION 1<br>(MPa) | ចុះចុះចុះចុះចុះចុះចុះចុះចុះចុះចុះចុះចុះច                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FLUID: NITROGEN<br>RDG AVG SCANS A   | 139 ALL SCNS 188 ALL SCNS 189 ALL SCNS 188 ALL SCNS 188 ALL SCNS 188 ALL SCNS 189 ALL SCNS 199 ALL SCNS 199 ALL SCNS 209 ALL SCNS 200 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

CONFIGURATION NO.  $\,\,3\,\,$  2 Brushes far apart at stations 2 & 5

| 288 ALL SCNS<br>289 ALL SCNS<br>290 ALL SCNS<br>291 ALL SCNS<br>292 ALL SCNS | PAR            | AL P             | PAR              | A P            | ALL              | A A E             | <u> </u>         | A A              | <u> </u>         | ₽.P.         | AA           | ALL              | ALL                                                          | ALL     | ALL                                                                | AL     | E E                      | AL A           | E P         | <u> </u>         | AL;              |                  | <u> </u>            | 22               |          | FLUID: NITROGEN<br>RDG AVG SCANS |
|------------------------------------------------------------------------------|----------------|------------------|------------------|----------------|------------------|-------------------|------------------|------------------|------------------|--------------|--------------|------------------|--------------------------------------------------------------|---------|--------------------------------------------------------------------|--------|--------------------------|----------------|-------------|------------------|------------------|------------------|---------------------|------------------|----------|----------------------------------|
| មាល់ក្នុងក្នុង<br>ភូទ្ធិស្វិស្សិស្សិស្សិស្សិស្សិស្សិស្សិស្សិស្ស              | ເພດຄ           | ကကျ              | ກຸບາບ            | າຫຸຕ           | igigi<br>W W     | တတ                | ກຫ               | တက               | . m : s          | (11 (11      |              | 1010             | an ar                                                        | i di di | יטיטי                                                              | טוטו   | າຫາ                      | າຫາ            | ,<br>,<br>, | ກຸບາເ            | ט ויט ויכ        | الناد            | ກຸດເ                | וטונ             | (MPa)    | AVG PRESS<br>STATION 1           |
|                                                                              |                | 5.16             | 1                | im             | $\dot{\sim}$     | ia                |                  |                  |                  |              |              |                  | 5.38                                                         | 5.37    | 55.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25.<br>25. |        | 5.04                     | 4.93           | 4.00        | 4.86             | 4.97             | 7.5<br>0.00      | 55.<br>150.<br>150. | 5.36<br>30       | (MPa)    | AVG PRESS<br>STATION 3           |
|                                                                              | 5.30<br>39     | 5.03<br>5.17     | 4.78<br>4.91     | 4.76<br>4.76   | 5.14<br>5.01     | 5.30              |                  |                  |                  |              |              |                  |                                                              |         |                                                                    | \      | منحد                     | منمنہ          | 'n          | 200              | oio i            | <u></u>          | 5.23<br>16          | سأس              | (MPa)    | AVG PRESS<br>STATION 4           |
| 5.10<br>4.74<br>4.39<br>4.04<br>3.68                                         | 5.38           | 4.52             | 4.19             | 3.83<br>3.63   | 4.86<br>4.51     | 5.38              | <b>4.</b> 88     | 4.18<br>4.53     | ა.ა.<br>ა.ა.გ    | 3.67<br>3.47 | 3.84<br>3.84 | 4.51             | .5.5<br>22.5<br>22.5<br>23.5<br>25.5<br>25.5<br>25.5<br>25.5 | 5.26    | 5.04<br>04.8                                                       | 4.70   | 4.35                     | 4.01           | 3.65<br>65  | 3.4.<br>830      | 4.34             | 4.70<br>4.52     | 5.03<br>4.86        | 5.34             | (MPa)    | AVG PRESS<br>STATION 5           |
| 83.63<br>83.63<br>83.73<br>83.75                                             | 89.28<br>83.88 | 84.83<br>85.72   | 84.00<br>84.14   | 83.75<br>83.75 | 83.48<br>83.66   | 84.20<br>83.59    | 83.42<br>83.48   | 83.35<br>83.52   | 83.26<br>83.36   | 83.02        | 82.86        | 82.84<br>02.82   | 82.86                                                        | 82.74   | 82.77<br>82.77                                                     | 82.76  | 82.80<br>08.38           | 82.86<br>74    | 82.89<br>73 | 82.62<br>82.75   | 83.05<br>82.94   | 83.09<br>82.94   | 82.99<br>82.95      | 83.11<br>83.13   | <u>*</u> | AVG TEMP<br>STATION 1            |
| 85.73<br>85.51<br>85.11<br>85.11                                             | 94.13<br>93.63 | 85.32<br>86.24   | 84.47<br>84.57   | 84.28<br>84.33 | 84.24<br>84.26   | 106.06<br>84.92   | 84.07<br>85.38   | 83.86<br>84.13   | 83.87<br>84.00   | 83.68        | 83.53        | 83.72<br>83.72   | 8.03                                                         | 280     | 83.42                                                              | 383    | 83.<br>33.<br>35.<br>35. | 83.46          | 83.47       | 83.29<br>34.29   | 88.<br>55.       | 83.69<br>83.58   | 83.76<br>83.70      | 85.36<br>84.09   | 8        | AVG TEMP<br>STATION 3            |
| 85.61<br>85.15<br>85.02                                                      | 95.89<br>93.53 | 85.18<br>86.05   | 84.33<br>84.57   | 84.11<br>84.17 | 84.06            | 106.23<br>84.33   | 83.92<br>85.27   | 83.73<br>83.94   | 83.79<br>83.80   | 83.54        | 83.37        | 83.60<br>83.60   | 87.87<br>87.87                                               | 83.72   | 88.01                                                              | 383    | 385<br>1991              | 83.15<br>26.15 | 83.25       | 83.04<br>83.12   | 83.34<br>83.25   | 83.36<br>83.27   | 83.23<br>83.26      | 84.33<br>83.55   | ?        | AVG TEMP<br>STATION 4            |
| 94. 244<br>90. 840<br>89. 775<br>88. 875<br>88. 678                          | 104.062        | 87.775<br>88.662 | 87.118<br>87.160 | 86.824         | 87.295<br>86.931 | 101.822<br>89.174 | 86.932<br>89.239 | 86.434<br>86.728 | 86.514<br>86.562 | 86.593       | 86.354       | 86.877<br>86.877 | 93.886                                                       | 90.163  | 86.513                                                             | 86.408 | 86.452                   | 86.487         | 86.777      | 86.470<br>86.547 | 86.514<br>86.474 | 86.399<br>86.330 | 86.402<br>86.416    | 89.815<br>87.221 | Ê        | AVG TEMP                         |
| 246.8<br>250.9<br>5 250.9<br>249.8<br>249.8                                  | 25.0           | -6-6             |                  | 565            | 9-1-             | . 8<br>0 U        | 8 8<br>4 4       | 883<br>843       | 83               | 2000         | 000          | 0000             | a & .                                                        | 065     | 56                                                                 | 56     | 50                       |                | 50          | <u>-</u> -       | <b>6</b> 6       | 9 <b>.</b> 9     |                     | 99               | (REV/S)  | AVERAGE<br>SHAFT                 |
| 0.05                                                                         |                |                  |                  |                |                  |                   |                  |                  |                  |              |              |                  |                                                              |         |                                                                    |        |                          |                |             |                  |                  |                  |                     |                  | (Kg/S)   | AVERAGE<br>LEAKAGE               |

FLUID: NITROGEN

| AVERAGE<br>LEAKAGE<br>DATE         | _              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       |
|------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| AVERAGE<br>SHAFT<br>Speen          | (REV/S)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       |
| AVG TEMP<br>STATION 5              | (K)            | 88.617<br>88.816<br>99.035<br>90.489<br>90.489<br>97.375<br>116.825<br>86.738<br>87.179<br>86.174<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.295<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>86.205<br>8                                                                                                                                             | 117.054<br>117.054<br>144.767<br>189.037<br>88.060<br>87.335<br>86.850<br>86.850<br>86.127<br>86.127<br>86.127<br>87.258<br>1122.324<br>116.128<br>110.128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 115.205<br>1115.205<br>1118.205<br>1118.573<br>1131.803<br>1131.555<br>190.051<br>88.051<br>86.661<br>87.067<br>88.554<br>86.661<br>87.067<br>101.744 |
| AVG TEMP<br>STATION 4              | ( <del>X</del> | 88.38.38.39.39.39.39.39.39.39.39.39.39.39.39.39.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 101.08<br>84.35<br>84.35<br>84.16<br>84.16<br>84.16<br>84.22<br>83.72<br>83.72<br>100.68<br>99.58<br>99.58<br>99.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 995.77<br>100.99<br>1115.04<br>1113.28<br>1193.28<br>84.58<br>84.54<br>84.92<br>86.98<br>86.98<br>86.98<br>94.70                                      |
| AVG TEMP<br>STATION 3              | (K)            | 85.93<br>85.93<br>85.93<br>85.93<br>85.93<br>85.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86.93<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86 | 1011<br>1451.76<br>1451.76<br>1451.76<br>184.31<br>184.10<br>116.93<br>1004.44<br>1004.44<br>1004.44<br>1004.44<br>1004.44<br>1004.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99999999999999999999999999999999999999                                                                                                                |
| AVG TEMP<br>STATION 1              | 3              | 88888888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88.888.888.888.888.89.98.72.09.888.89.99.72.09.888.89.99.988.39.70.72.09.888.99.98.89.70.72.09.888.99.98.70.70.70.70.70.70.70.70.70.70.70.70.70.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 99.99<br>90.09<br>90.09<br>90.09<br>84.51<br>84.51<br>85.10<br>90.034<br>90.034                                                                       |
| AVG PRESS<br>STATION 5             | (MPa)          | 444°°°°°°°°°°444°°°°°°°°°°°°°°°°°°°°°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | v.v.v.v.v.4.4.4.4.4.v.v.v.v.v.4.4.4.v.<br>0.4.0.4.4.4.4.4.4.v.v.v.v.v.4.4.4.v.v.<br>0.4.0.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .4446.6.0.0.0.444.6.6.6.44.6.6.6.6.6.6.6                                                                                                              |
| AVG PRESS<br>STATION 4             | (MPa)          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ჀჀჀჀჀჀჀჀჀჀ<br>ႯჅჅჇჇႼႼჅჅჅჅ<br>ႨႼჅჅჅჅჅჅჅჅჅ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | დდდდდდდდდდ<br>4.000.000<br>8.118.4<br>6.000.000.000.000.000.000.000.000.000.0                                                                         |
| AVG PRESS<br>STATION 3             | (MPa)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ក្រសួលក្រហូកក្រសួល<br>ក្រសួលក្រសួលក្រសួលក្រសួលក្រសួលក្រសួលក្រសួលក្រសួលក្រសួលក្រសួលក្រសួលក្រសួលក្រសួលក្រសួលក្រសួលក្រ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | გარიტიტიტიტი<br>1000012000<br>1000012000                                                                                                              |
| VG PRESS                           | (MPa)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       |
| FLUID: NITROGEN<br>RDG AVG SCANS A |                | 293 ALL 294 ALL 295 ALL 295 ALL 295 ALL 297 ALL 298 ALL 208 AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SCOCOO SC |                                                                                                                                                       |
|                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       |

DELTA-P STA 1-2 (MPd) DELTA-P STA 1-5 (MPd) 0.053 0.089 0.089 0.0124 0.0126 0.0127 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128 0.012 AVERAGE SHAFT SPEED (REV/S) 2 AVG TEMP STATION 5 992.21 991.653 991.653 990.654 990.657 990.657 991.373 991.373 991.373 991.373 991.373 991.373 991.373 991.373 991.373 991.373 991.373 991.373 991.373 991.373 991.373 991.373 991.373 991.373 991.373 991.373 991.373 991.373 991.373 AVG TEMP STATION 2 ంర 884.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 883.98 88 ന .. positions ---AVG TEMP STATION 1 tightly packed AVG PRESS STATION 5 (MPa) AVG PRESS STATION 2 Brushes (MPa) N AVG PRESS STATION 1 4 (MPa) CONFIGURATION NO. FLUID: NITROGEN RDG AVG SCANS 

CONFIGURATION NO. RESEARCH PROGRAM: BRUSH SEALS FOR CRYOGENIC APPLICATIONS TEST FACILITY: CCL - CELL2 2 Brushes tightly packed .. positions 3 & 4 BAROMETER: 99.280 kPa

4

| 416 ALL SCNS 417 ALL SCNS 418 ALL SCNS 421 ALL SCNS 422 ALL SCNS 423 ALL SCNS 423 ALL SCNS 424 ALL SCNS 425 ALL SCNS 435 ALL SCNS 436 ALL SCNS 437 ALL SCNS 438 ALL SCNS 439 ALL SCNS 439 ALL SCNS 430 ALL SCNS 431 ALL SCNS 432 ALL SCNS 433 ALL SCNS 434 ALL SCNS 445 ALL SCNS 445 ALL SCNS 456 ALL SCNS 457 ALL SCNS 458 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FLUID: NITROGEN<br>RDG AVG SCANS /   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AVG PRESS<br>STATION 1               |
| ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AVG PRESS<br>STATION 2<br>(MPa)      |
| 5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.0000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVG PRESS<br>STATION 5<br>(MPa)      |
| 83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359<br>83.359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AVG TEMP<br>STATION 1<br>(K)         |
| 83.87<br>83.76<br>83.76<br>83.76<br>83.76<br>83.76<br>83.77<br>83.77<br>83.77<br>83.77<br>83.77<br>83.77<br>83.77<br>83.83<br>84.10<br>85.04<br>86.99<br>87.86<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.36<br>88.50<br>91.50<br>88.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98.50<br>98                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AVG TEMP<br>STATION 2<br>(K)         |
| 93.09<br>92.30<br>91.76<br>91.76<br>91.76<br>91.77<br>91.77<br>91.77<br>91.77<br>91.77<br>91.77<br>91.77<br>91.77<br>91.77<br>92.17<br>91.85<br>92.56<br>84.22<br>84.22<br>85.24<br>86.94<br>87.10<br>87.10<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88.32<br>88                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AVG TEMP<br>STATION 5                |
| -0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11<br>-0.11 | AVERAGE<br>SHAFT<br>SPEED<br>(REV/S) |
| 0.025 0.025 0.025 0.050 0.050 0.073 0.0073 0.0074 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AVERAGE<br>LEAKAGE<br>RATE<br>(Kg/S) |
| 0.16 0.16 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DELTA-P<br>STA 1-5<br>(MPd)          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DELTA-P<br>STA 1-2<br>(MPd)          |

|                  |                 | AVERAGE<br>LEAKAGE<br>RATE         | (Kg/S)         | 0.0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|-----------------|------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 99.039 kPa       |                 | AVERAGE<br>Shaft<br>Speed          | (REV/S)        | 22222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BAROMETER: 99.0  |                 | AVG TEMP<br>STATION 5              | ( <del>X</del> | 97. 688 885. 223 885. 223 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885. 233 885.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CELL2 BAR        |                 | AVG TEMP<br>STATION 4              | <b>(ξ</b>      | 29888888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ITY: CCL -       |                 | AVG TEMP<br>STATION 2              | <u>X</u>       | 88888888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TEST FACILITY    | ĸ               | AVG TEMP<br>STATION 1              | (K)            | 83.83.83.83.83.83.83.83.83.83.83.83.83.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PLICATIONS       | ce: pos 1,3,    | AVG PRESS<br>STATION 5             | (MPa)          | mmn4444       mmn4444       mmn4444       mmn4444       mmn4444       mmn4444       mmn4444       mmn44444       mmn444444       mmn44444       mmn44444       mmn44444       mmn44444       mmn44444       mmn44444       mmn44444       mmn44444       mmn444444       mmn444444       mmn444444       mmn444444       mmn4444444       mmn444444       mmn444444       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CRYOGENIC APPL   | equally spac    | AVG PRESS<br>STATION 4             | (MPa)          | 0.0.0.0.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SEALS FOR C      | 3 Brushes e     | AVG PRESS<br>STATION 2             | (MPa)          | ででででででででできる。         でででででででででででででで           できるととというのではないできる。         となるというのではないできる。           できるというのではないできる。         となるというのではないできる。           できるというのではないできる。         となるというのではないできる。           できるというのできるというのできる。         となるというのできるというのできる。           できるというのできるというのできるというできる。         これできるというのできるというのできるというのできる。           できるというのできるというのできるというのできるというのできるというのできるというできるというできるというできるというのできるというできるというできるというできるというできるというできるというのできるというできるというできるというできるというのできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというのできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというでものできるというでものできるというでものできるというできるというでものできるというでものできるというでものできるというでものできるというでものできるというでものできるというでものできるというでものでものできるというでものできるというできるというできるというでものできるというでものできるというでものできるというでもの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| : BRUSH          | NO. 5           | AVG PRESS<br>STATION 1             | (MPa)          | ສຸກັດການການການການການການການການການການການການການກ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RESEARCH PROGRAM | CONFIGURATION P | FLUID: NITROGEN<br>RDG AVG SCANS A |                | 475 ALL SCNS<br>477 ALL SCNS<br>477 ALL SCNS<br>489 ALL SCNS<br>481 ALL SCNS<br>482 ALL SCNS<br>483 ALL SCNS<br>486 ALL SCNS<br>487 ALL SCNS<br>486 ALL SCNS<br>486 ALL SCNS<br>486 ALL SCNS<br>486 ALL SCNS<br>486 ALL SCNS<br>486 ALL SCNS<br>501 ALL SCNS<br>502 ALL SCNS<br>503 ALL SCNS<br>504 ALL SCNS<br>505 ALL SCNS<br>506 ALL SCNS<br>507 ALL SCNS<br>511 ALL SCNS<br>512 ALL SCNS<br>513 ALL SCNS<br>514 ALL SCNS<br>515 ALL SCNS<br>516 ALL SCNS<br>517 ALL SCNS<br>518 ALL SCNS<br>518 ALL SCNS<br>518 ALL SCNS<br>519 ALL SCNS<br>510 ALL SCNS<br>511 ALL SCNS<br>512 ALL SCNS<br>513 ALL SCNS<br>514 ALL SCNS<br>515 ALL SCNS<br>516 ALL SCNS<br>517 ALL SCNS<br>518 ALL SCNS<br>518 ALL SCNS<br>519 ALL SCNS<br>519 ALL SCNS<br>510 ALL SCNS<br>511 ALL SCNS<br>511 ALL SCNS<br>512 ALL SCNS<br>513 ALL SCNS<br>514 ALL SCNS<br>515 ALL SCNS<br>516 ALL SCNS<br>517 ALL SCNS<br>518 ALL SCNS<br>518 ALL SCNS<br>519 ALL SCNS<br>519 ALL SCNS<br>511 ALL SCNS<br>511 ALL SCNS<br>512 ALL SCNS<br>513 ALL SCNS<br>514 ALL SCNS<br>515 ALL SCNS<br>515 ALL SCNS<br>516 ALL SCNS<br>517 ALL SCNS<br>518 ALL SCNS<br>518 ALL SCNS<br>518 ALL SCNS<br>519 ALL SCNS<br>519 ALL SCNS<br>519 ALL SCNS<br>510 ALL SCNS<br>510 ALL SCNS<br>511 ALL SCNS<br>512 ALL SCNS<br>513 ALL SCNS<br>514 ALL SCNS<br>515 ALL SCNS<br>516 ALL SCNS<br>517 ALL SCNS<br>518 A |

FLUID: NITROGEN

| AVERAGE<br>LEAKAGE<br>DATE       | (Kg/S)  | 00000000000000000000000000000000000000                                                                                                                                                                                                                                       | 00000000000000000000000000000000000000                                              | 9000000000000<br>8000000000000000000000000                                           | 0.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AVERAGE<br>SHAFT<br>SPEED        | (REV/S) | 222499<br>2244998<br>22449988<br>2244998888888888                                                                                                                                                                                                                            | 420.7<br>416.9<br>419.2<br>419.0<br>421.4<br>421.4<br>420.6<br>420.6<br>420.6       |                                                                                      | 5885.3<br>5885.3<br>5885.9<br>5887.4<br>5666.5<br>573.2<br>573.2<br>587.3<br>587.3<br>587.3<br>587.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AVG TEMP<br>STATION 5            | (X)     | 88.864<br>101.564<br>101.564<br>101.564<br>101.564<br>87.100<br>86.182<br>85.970<br>86.719<br>88.038<br>88.834<br>89.701<br>91.400<br>93.488<br>96.258                                                                                                                       | 127.461<br>114.849<br>108.360<br>102.913<br>101.140<br>99.923<br>100.826<br>100.757 | ,                                                                                    | 141.670<br>113.135.4<br>113.115.1115<br>111.205<br>101.205<br>100.248<br>112.975<br>112.975<br>113.975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AVG TEMP<br>STATION 4            | (K)     | 88.98.98.98.98.98.98.98.98.98.98.98.98.9                                                                                                                                                                                                                                     | 97.87<br>97.87<br>90.91<br>90.91<br>90.33<br>90.33<br>91.30                         | 98888888888888888888888888888888888888                                               | 127.22<br>906.55<br>98.34<br>92.11<br>92.19<br>99.42<br>99.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88.07<br>83.16<br>83.56<br>83.56<br>83.55<br>83.55<br>90.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AVG TEMP<br>STATION 2            | (K)     | 85.27<br>98.35<br>98.35<br>98.35<br>88.38<br>83.37<br>88.33<br>88.33<br>88.11<br>88.11<br>99.99<br>99.99<br>99.96<br>99.96                                                                                                                                                   | 101.07<br>93.48<br>88.67<br>88.29<br>88.34<br>98.85<br>96.85                        | 882.553<br>882.554<br>882.553<br>882.553<br>882.553<br>882.553<br>882.553<br>883.611 | 117.86<br>102.15<br>92.15<br>92.58<br>90.98<br>90.87<br>91.83<br>94.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 833.24<br>833.27<br>833.24<br>833.24<br>833.24<br>853.26<br>853.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AVG TEMP<br>STATION 1            | (K)     | 8833.77<br>883.77<br>883.77<br>883.34<br>887.89<br>87.95<br>90.10<br>90.10<br>90.10                                                                                                                                                                                          | 88888888888888888888888888888888888888                                              | 882.13<br>882.13<br>882.13<br>882.14<br>882.28<br>882.28<br>882.15<br>882.15         | 88.03<br>88.25<br>87.52<br>87.52<br>86.12<br>86.72<br>87.26<br>87.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 883.37<br>883.37<br>883.37<br>883.37<br>883.37<br>84.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AVG PRESS<br>STATION 5           | (MPa)   | 44400044460044460<br>                                                                                                                                                                                                                                                        |                                                                                     |                                                                                      | 24444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AVG PRESS<br>STATION 4           | (MPa)   |                                                                                                                                                                                                                                                                              | •                                                                                   | 0.0.0.4.4.4.4.4.0.0.0.0.0.0.0.0.0.0.0.0                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.17<br>4.452<br>71.33<br>6.14<br>7.14<br>7.14<br>7.05<br>7.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AVG PRESS<br>STATION 2           | (MPa)   | 7.00.00.44.00.00.00.00.00.00.00.00.00.00.                                                                                                                                                                                                                                    | •                                                                                   | , wayayayayayayayayayayayayayayayayayayay                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.22<br>20.02.4<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0<br>20.00.0 |
| N<br>AVG PRESS<br>STATION 1      | (MPa)   | ກຸກກຸກກຸກກຸກກຸກກຸກກຸກກຸກກຸກ<br>ຈີນ ຄົນ ຄົນ ຄົນ ຄົນ ຄົນ ຄົນ ຄົນ ຄົນ ຄົນ ຄົ                                                                                                                                                                                                    | , www.www.www.<br>144444444444444444444444444                                       |                                                                                      | ᡊᡎᡊᡊᡊᡊᡊᡊᡊᡊ<br>ᡊᡆ᠘᠘᠘᠘᠘᠘<br>ᡠᠯᡱᢡᢡᡛ᠖᠘᠘᠘᠐ᢓᢡ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 252721111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FLUID: NITROGEN<br>RDG AVG SCANS |         | 529 ALL SCNS<br>531 ALL SCNS<br>532 ALL SCNS<br>533 ALL SCNS<br>534 ALL SCNS<br>535 ALL SCNS<br>539 ALL SCNS<br>539 ALL SCNS<br>540 ALL SCNS<br>541 ALL SCNS<br>543 ALL SCNS<br>543 ALL SCNS<br>543 ALL SCNS<br>544 ALL SCNS<br>544 ALL SCNS<br>544 ALL SCNS<br>544 ALL SCNS | TELETE E                                                                            | - I I I I I I I I I I I I I I I I I I I                                              | APLICATION OF THE PROPERTY OF | HE WALLER SALLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

AVERAGE LEAKAGE RATE (Kg/S) AVERAGE SHAFT SPEED (REV/S) 89. 649
88. 554
88. 554
88. 554
88. 554
88. 554
88. 554
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555
88. 555 ស AVG TEMP STATION 5  $\Xi$ 4 AVG TEMP STATION 4 3 AVG TEMP STATION 3  $\overline{\Xi}$ AVG TEMP STATION 1 83. 42 882. 32 882. 32 882. 32 882. 32 882. 32 883. 33 883. 32 883. 33 883. 33 883. 34 882. 32 882. 32 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 883. 34 AVG PRESS STATION 5 พิสเทสสุลพันพุนสุลพันพุนสุลพันพุนสุลพันพุนสุลพันพุนสุลพันพุนสุลพันพุนสุลพันพุนสุลพันพุนสุลพันพุนสุลพันพุ (MPa) AVG PRESS STATION 4 (MPa) AVG PRESS STATION 3 (MPa) AVG PRESS STATION 1 (MPa) SCANS P AVG S FLUID: RDG A 

CONFIGURATION NO. 7 3 Brushes equally spaced - positions 1,3,5

| FLUID: NITROGEN<br>RDG AVG SCANS |                  | 662 ALL SCNS<br>663 ALL SCNS<br>664 ALL SCNS<br>665 ALL SCNS<br>666 ALL SCNS<br>668 ALL SCNS |                                                        |                                                     | PPPPP                                     |                                                              | PARA                                         | PPPP                                                                               | PPPP                                                                | PPPP                                           | 2222                                                                                                                      | ALLA                                 | ALL                              | ALLE                                   | ALL              |
|----------------------------------|------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------|----------------------------------------|------------------|
| AVG PRESS                        | (MPa)            |                                                                                              | ပုံ လူ လူ လူ လူ လူ<br>လူ လူ လူ လူ လူ<br>လူ လူ လူ လူ လူ | 5.40<br>5.40                                        | 5.555555<br>5.655555<br>5.655555          | **************************************                       | မှ အလည်းသူ<br>မှ ထို လည်းသူ<br>မှ ထို လည်းသူ | າຫຫຫຫ<br>ວິດ<br>2007<br>2008                                                       | ######################################                              | 55555555555555555555555555555555555555         | ກຫຫຫຫ<br>ພູພູພູພ<br>ພູພູພູພູພູພູພູພູພູພູພູພູພູພ                                                                           | ကြည်း<br>လူတွင်း<br>လူတွင်း          | 5.30<br>5.30<br>5.17             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 5.17             |
| AVG_PRESS                        | a)               | 5.227<br>5.227<br>5.006                                                                      | .5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5                 | 5.27<br>5.17<br>5.07<br>4.96<br>4.91                | 4.87<br>5.97<br>5.15<br>5.22              | 2066<br>2006<br>2006<br>2006<br>2006<br>2006<br>2006<br>2006 | 75.55.4.4.4.5<br>0.0000000000000000000000000 | 5.27<br>5.27                                                                       | 55455<br>5000<br>12000<br>12000                                     | 555555<br>5534<br>5664                         | 4.88<br>4.88                                                                                                              | 5.14<br>5.22                         | 5.21<br>4.92                     | 4.79<br>4.83<br>5.00                   | 5.13<br>17       |
| AVG PRESS                        | a) 1             | 5.32<br>5.14<br>4.99<br>4.82<br>4.78<br>4.74                                                 | 5.39<br>5.39<br>5.39                                   | 5.11<br>4.87<br>4.66<br>4.43<br>4.36                | 5.055<br>4.655                            | 4.688<br>67                                                  | 7.4.4.4.50<br>7.67<br>7.85                   | 4.95<br>3.12<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5 | 4.57<br>4.41<br>4.50<br>4.67                                        | 55.28<br>5.28<br>10                            | 4.93<br>4.75<br>4.43                                                                                                      | 4.69<br>5.06<br>5.28                 | 4.87<br>4.87                     | 4.53<br>4.58                           | 5.09<br>5.18     |
| AVG PRESS                        | a)               | 4.89<br>4.58<br>3.87<br>3.87                                                                 | 5.27<br>5.27<br>5.27                                   | 4.99<br>4.59<br>4.25<br>3.88                        | 3.54<br>4.25<br>4.58                      | 4.56<br>4.51                                                 | 4.4.3.50<br>4.5537                           | 25.00<br>25.00<br>25.00<br>25.00<br>25.00                                          | .4.0.0.3.<br>4.0.0.4.0.<br>1.0.0.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. | 4.55.24<br>4.89<br>4.87                        | 2.4.5<br>2.4.5<br>2.4.5<br>2.4.5<br>2.5<br>2.5<br>2.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3 | 4.18<br>4.47<br>4.85                 | 3.9.4.80<br>5.96                 | 4.00<br>4.33<br>3.45<br>4.33           | 5.02             |
| AVG TEMP                         | ;                | 83.11<br>83.36<br>83.29<br>83.17<br>83.06<br>83.06                                           | 83.05<br>83.24<br>83.43                                | 88.54<br>88.23<br>88.01<br>87.85                    | 87.79<br>88.16<br>88.03<br>88.29<br>88.49 | 28888888888888888888888888888888888888                       | 85,23<br>05,23                               | 86.33<br>84.11<br>83.84                                                            | 83.64<br>83.67<br>83.70                                             | 83.82<br>83.33<br>83.44                        | 83.28<br>83.84<br>63.70                                                                                                   | 83.98<br>84.04<br>84.42              | 88888<br>84.55<br>88.55<br>88.55 | 33.96<br>33.96                         | 84.08<br>84.54   |
| TEN STEER                        |                  | 83.63<br>83.63<br>83.29<br>83.29                                                             | 83.25<br>83.33<br>83.56<br>84.72                       | 103.16<br>98.14<br>96.45<br>94.98<br>94.70          | 94.40<br>95.91<br>95.90<br>97.26          | 96.78<br>92.69<br>91.18                                      | 88.97<br>89.42<br>90.29                      | 98.04<br>90.03<br>87.35                                                            | 85.35<br>85.11                                                      | 85.71<br>89.83<br>84.78<br>84.32               | 84.02<br>84.35<br>84.38                                                                                                   | 84.46<br>84.42<br>84.87<br>86.11     | 84.70<br>84.66<br>83.70          | 84.01<br>84.06<br>84.26                | 84.39<br>85.93   |
| AVG TEMP                         | <u>ح</u>         | 84.34<br>83.91<br>83.81<br>83.63<br>83.53<br>83.53                                           | 83.53<br>84.08<br>87.49                                | 110.58<br>105.13<br>101.43<br>98.86<br>98.60        | 97.91<br>99.94<br>100.28<br>107.36        | 102.65<br>95.78<br>93.48<br>92.08                            | 90.44<br>91.10<br>91.75<br>92.54             | 103.76<br>92.87<br>88.71<br>87.26                                                  | 85.76<br>85.97                                                      | 85.35<br>84.75                                 | 84.54<br>84.51<br>84.53                                                                                                   | 84.68<br>84.77<br>85.24<br>86.84     | 85.28<br>84.00                   | 84.25<br>84.38                         | 84.70<br>89.34   |
| AVG TEMP                         | :                | 87.839<br>86.372<br>85.767<br>85.493<br>85.239<br>85.233<br>85.198                           | 85.276<br>85.558<br>85.112<br>95.111<br>136.872        | 127.016<br>118.638<br>113.938<br>119.740<br>108.778 | 108.011<br>111.113<br>112.219<br>112.653  | 134.032<br>117.678<br>107.088<br>102.681<br>99.741           | 96.279<br>97.279<br>98.588<br>100.354        | 117.342<br>99.938<br>94.095<br>91.581                                              | 88.562<br>88.944                                                    | 99.700<br>90.700<br>97.942<br>88.415<br>87.124 | 86.493<br>86.281<br>86.485<br>86.372                                                                                      | 86.657<br>86.869<br>87.499<br>89.394 | 87.201<br>86.947<br>85.814       | 86.264<br>86.264                       | 87.097<br>96.594 |
| V M                              | SPEED<br>(REV/S) | 0000000                                                                                      | 700000                                                 | 222222                                              |                                           | 377778                                                       | 71777                                        | 22222                                                                              | 868888                                                              | 8648                                           |                                                                                                                           | $\omega = \omega \omega$             |                                  |                                        | 00               |
| AVERAGE                          | RATE<br>(Kg/S)   | 0.07                                                                                         | 2000000                                                | 000000000000000000000000000000000000000             | 0000000                                   | 00000000000000000000000000000000000000                       | 20,000                                       | 20000<br>20000<br>20000                                                            | 0.000<br>0.000<br>0.000<br>0.000                                    | 00000                                          | 0.065                                                                                                                     | 0.07<br>0.07<br>0.03                 | 0000<br>0000<br>0000<br>0000     | 0.0000                                 | 0.02             |

RESEARCH PROGRAM: BRUSH SEALS FOR CRYOGENIC APPLICATIONS TEST FACILITY: CCL - CELL2 BAROMETER: 97.653 kPa

|                  | DELTA-P<br>STA 1-5<br>(MPd)           | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | AVERAGE<br>LEAKAGE<br>RATE<br>(Kg/S)  | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | AVERAGE<br>SHAFT<br>SPEED<br>(REV/S)  | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | AVG TEMP<br>STATION 5<br>(K)          | 88888888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| - position       | AVG TEMP<br>STATION 1<br>(K)          | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Single Brush     | AVG PRESS<br>STATION 5<br>(MPa)       | ででででででです。444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | EN<br>AVG PRESS<br>STATION 1<br>(MPa) | ឨ<br>៹៳ឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨឨ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CONFIGURATION NO | FLUID: NITROGEN<br>RDG SCAN           | 7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446<br>7446 |

RESEARCH PROGRAM: BRUSH SEALS FOR CRYOGENIC APPLICATIONS TEST FACILITY: CCL - CELL2

BAROMETER: 97.653 kPa

| FLUID: NITROGEN<br>RDG SCAN | CONFIGURATION NO.       |
|-----------------------------|-------------------------|
| AVG PRESS<br>STATION 1      | 8                       |
| AVG PRESS<br>STATION 5      | Single Brush - position |
| AVG TEMP<br>STATION 1       | - position 1            |
| AVG TEMP<br>STATION 5       |                         |
| AVERAGE<br>SHAFT            | ·                       |
| m                           |                         |
| E AVERAGE                   |                         |

| 740 555<br>740 557<br>740 557<br>740 557<br>740 657<br>740 657<br>740 657<br>740 657<br>740 657<br>740 657<br>740 77<br>740 77<br>740 77<br>740 77<br>740 77<br>740 77<br>740 77<br>740 77<br>740 92<br>740 92<br>740 102<br>740 102<br>740 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | LUID: NITROGEN<br>DG SCAN |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------|
| おおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおお                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (MPa)   | AVG PRESS<br>STATION 1    |
| 22.22.22.22.22.22.22.22.22.22.22.22.22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (MPa)   | AVG PRESS<br>STATION 5    |
| 83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27<br>83.27 | ?       | AVG TEMP<br>STATION 1     |
| 85.23<br>85.23<br>85.23<br>85.23<br>85.23<br>85.23<br>85.23<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33<br>85.33 | (K)     | AVG TEMP<br>STATION 5     |
| 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (REV/S) | AVERAGE<br>SHAFT          |
| 0.157 0.169 0.169 0.163 0.163 0.164 0.164 0.165 0.165 0.165 0.166 0.167 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Kg/S)  | AVERAGE<br>LEAKAGE        |
| 1.75<br>1.75<br>1.75<br>1.75<br>1.88<br>1.88<br>1.88<br>1.88<br>1.99<br>1.99<br>1.99<br>1.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (MPd)   | DELTA-P<br>STA 1-5        |

RESEARCH PROGRAM: BRUSH SEALS FOR CRYOGENIC APPLICATIONS TEST FACILITY: CCL - CELL2 BAROMETER: 97.653 kPa

| 740 113<br>740 113<br>740 113<br>740 113<br>740 113<br>740 113<br>740 113<br>740 123<br>740 123<br>740 123<br>740 123<br>740 123<br>740 123<br>740 123<br>740 133<br>740 133<br>740 133<br>740 133<br>740 135<br>740 135<br>740 135<br>740 135<br>740 155<br>740 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 740 110                  | CONFIGURATION NO<br>FLUID: NITROGEN<br>RDG SCAN |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------|
| Grandanananananananananananananananananan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (MPa)<br>5.21            | NO. 8 EN AVG PRESS STATION 1                    |
| 2.337<br>2.337<br>2.337<br>2.144<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107<br>2.107 | (MPa)<br>2.31<br>2.33    | Single Brush AVG PRESS STATION 5                |
| 88888888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83.21<br>83.21           | - position 1  AVG TEMP STATION 1                |
| \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2.500 \$2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85.44<br>85.36           |                                                 |
| 666666666666666666666666666666666666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | AVERAGE<br>SHAFT<br>SPEED                       |
| 0.190 0.190 0.196 0.197 0.198 0.198 0.199 0.199 0.199 0.199 0.199 0.199 0.199 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Kg/S)<br>0.185<br>0.195 | AVERAGE<br>LEAKAGE                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (MPd)<br>2.90<br>2.88    | DELTA-P<br>STA 1-5                              |

DELTA-P STA 1-5 (MPd) 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 AVERAGE LEAKAGE RATE (Kg/S) AVERAGE SHAFT SPEED (REV/S) 5 AVG TEMP STATION  $\overline{\mathfrak{S}}$ - position --AVG TEMP STATION 1  $\Xi$ Single Brush AVG PRESS STATION 5 (MPa) AVG PRESS STATION 1  $\infty$ (MPa) CONFIGURATION NO. FLUID: NITROGEN / RDG SCAN / 11066 11066 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 11070 

97.653 kPa

| FACILITY: CCL - CELL2 BAROMETER: 97 |                                   | AVERAGE AVERAGE DELTA-P<br>SHAFT LEAKAGE STA 1-5<br>EDED |       | 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 |
|-------------------------------------|-----------------------------------|----------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APPLICATIONS TEST FA                | N NO. 8 Single Brush - position 1 | AVG TEMP AVI<br>STATION 5 SH                             | (K)   | 88888888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CRYOGENIC APP                       |                                   | AVG TEMP<br>STATION 1                                    | (K)   | 88888888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| F0R                                 |                                   | AVG PRESS<br>STATION 5                                   | (MPa) | 0.000111000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| : BRUSH                             |                                   | GEN<br>AVG PRESS<br>STATION 1                            | (MPa) | พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RESEARCH PROGRAM                    | CONFIGURATION                     | FLUID: NITROGEN<br>RDG SCAN A                            |       | 740 259 88 251 250 270 271 272 272 272 272 272 272 272 272 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| KESEARCH PROGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | : BRUSH                               | SEALS FOR CRY                          | CRYOGENIC APPL                         | APPLICATIONS TEST                      | T FACILITY:              | CCL - CELL2                            | BAROMETER:                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--------------------------|----------------------------------------|----------------------------------------|
| CONFIGURATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NO. 8                                 | Single Brush                           | - position                             |                                        |                          |                                        |                                        |
| FLUID: NITROGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EN<br>AVG PRESS<br>STATION 1          | AVG PRESS<br>STATION 5                 | AVG TEMP<br>STATION 1                  | AVG TEMP<br>STATION 5                  | AVERAGE<br>SHAFT<br>SPER | AVERAGE<br>LEAKAGE<br>BATE             | DELTA-P<br>STA 1-5                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (MPa)                                 | (MPa)                                  | (K)                                    | ( <del>X</del>                         | (REV/S)                  | (Kg/S)                                 | (MPd)                                  |
| 740 275 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 277 740 27 | ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛ | 00000000000000011111000000000000000000 | ###################################### | ###################################### |                          | 0.000000000000000000000000000000000000 | 44444444444444444444444444444444444444 |

| DELTA-P<br>STA 1-2               | (MPd)   | 0.000111100000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DELTA-P<br>STA 1-5               | (MPd)   | 0.000111100000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| VENTURI 2<br>LEAKAGE<br>RATE     | (Kg/S)  | 0.059<br>0.068<br>0.0077<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.00 |
| AVERAGE<br>SHAFT<br>SPEED        | (REV/S) | 00100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AVG TEMP<br>STATION 5            | (X)     | 33.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AVG TEMP<br>STATION 2            | €       | 288.588<br>28.599<br>28.588.388<br>28.588.388<br>28.588.388<br>28.588.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888.388<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.5888<br>28.588                                                                                                                                                                                                                                                                                                                                                  |
| AVG TEMP<br>STATION 1            | 3       | 26.99<br>27.28<br>27.28<br>27.28<br>27.28<br>27.28<br>27.28<br>27.28<br>27.28<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39<br>28.39  |
| AVG PRESS<br>STATION 5           | (MPa)   | 494414111114479444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AVG PRESS<br>STATION 2           | (MPa)   | 7979-1-1-1-1999-1999-1999-1999-1999-199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AV6                              | (MPa)   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FLUID: HYDROGEN<br>RDG AVG SCANS |         | S C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AVG                              |         | FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FLUII                            |         | 88888888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| DELTA-P<br>STA 1-2                                | (MPd)   | 0.000111100000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DELTA-P<br>STA 1-5                                | (MPd)   | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 |
| VENTURI 2<br>LEAKAGE<br>DATE                      | (Kg/S)  | 0.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AVERAGE<br>SHAFT<br>Speen                         | (REV/S) | 28888888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AVG TEMP<br>STATION 5                             | (K)     | 33.05.33.05.33.05.33.05.33.05.33.33.33.33.33.33.33.33.33.33.33.33.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AVG TEMP<br>STATION 2                             | (K)     | 38827272728888777272888887777778888871144163<br>38877777777778888777777888887777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AVG TEMP<br>STATION 1                             | (K)     | 27.71.69<br>27.71.69<br>27.72.88.36.89.36.50.39.36.29.36.20.39.36.20.39.36.20.39.36.20.39.39.39.39.39.39.39.39.39.39.39.39.39.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AVG PRESS<br>STATION 5                            | (MPa)   | 2.2.2.2.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| AVG PRESS<br>STATION 2                            | (MPa)   | 2.2.2.2.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| AVG PRESS<br>STATION 1                            | (MPa)   | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FLUID: HYDROGEN<br>RDG AVG SCANS AVG PR<br>STATIO |         | 859 ALL SCNS 861 ALL SCNS 863 ALL SCNS 863 ALL SCNS 865 ALL SCNS 865 ALL SCNS 866 ALL SCNS 866 ALL SCNS 866 ALL SCNS 870 ALL SCNS 871 ALL SCNS 872 ALL SCNS 873 ALL SCNS 873 ALL SCNS 873 ALL SCNS 873 ALL SCNS 883 ALL SCNS 884 ALL SCNS 885 ALL SCNS 885 ALL SCNS 886 ALL SCNS 887 ALL SCNS 889 ALL SCNS 889 ALL SCNS 889 ALL SCNS 889 ALL SCNS 899 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# Appendix D

# Data Tables—English Units

BAROMETER: 14.337 PSIA CELL2

| BAROMETER                |                            | DELTA-P<br>STA 1-5                             | (DSID)     | 48.39<br>123.89<br>14.89<br>14.89<br>15.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>16.10<br>1                                                                                                                                                                                                                                                                                                     |
|--------------------------|----------------------------|------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CCL - <b>CE</b> LL2      | Single brush in position 1 | AVERAGE<br>LEAKAGE<br>RATE                     | (LBM/S)    | 0.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FACILITY:                |                            | AVERAGE<br>SHAFT<br>SPEED                      | (RPM)      | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| APPLICATIONS TEST        |                            | AVG TEMP<br>STATION 5                          | ( <u>R</u> | 1559 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 11359 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CRYOGENIC APPL           |                            | AVG TEMP<br>STATION 1                          | (R)        | 1551<br>1551<br>1551<br>1551<br>1551<br>1551<br>1551<br>155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROGRAM: BRUSH SEALS FOR |                            | AVG PRESS<br>STATION 5                         | (PSIA)     | 782.69<br>755.15<br>660.33<br>660.33<br>660.33<br>660.33<br>660.33<br>656.99<br>656.99<br>616.27<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738.93<br>738<br>738.93<br>738.93<br>738.93<br>738.93<br>738.9 |
|                          | CONFIGURATION NO. 2        | : NITROGEN<br>AVG SCANS AVG PRESS<br>STATION 1 | (PSIA)     | ALL SCNS 786.90 ALL SCNS 778.56 ALL SCNS 778.56 ALL SCNS 778.56 ALL SCNS 778.56 ALL SCNS 764.71 ALL SCNS 764.71 ALL SCNS 767.92 ALL SCNS 767.93 ALL SCNS 767.43 ALL SCNS 768.35 ALL SCNS 769.17 ALL SCNS 769.17 ALL SCNS 769.17 ALL SCNS 777.43 ALL SCNS 776.13 ALL SCNS 766.10 ALL SCNS 766.10 ALL SCNS 776.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RESEARCH                 | CONFIG                     | FLUID:<br>RDG A                                |            | 22222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| BAROMETER:       |               | DELTA-P<br>STA 1-5              | (PSID)  | 123.<br>24.45.<br>25.55.<br>26.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.<br>27.55.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|---------------|---------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CCL - CELL2      |               | AVERAGE<br>LEAKAGE              | (LBM/S) | 0.157<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107<br>0.107 |
| ST FACILITY:     |               | AVERAGE<br>SHAFT<br>SPEED       | (RPM)   | 255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126.0<br>255126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ATIONS TE        | in position 1 | AVG TEMP<br>STATION 5           | (R)     | 188.70<br>188.70<br>158.74<br>158.54<br>158.54<br>158.54<br>158.54<br>158.55<br>159.64<br>150.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>160.68<br>16                                                                                                                                                |
| CRYOGENIC APPLIO |               | AVG TEMP<br>STATION 1           | (R)     | 174.71<br>178.71<br>187.74<br>187.74<br>187.74<br>188.11<br>187.79<br>189.71<br>189.71<br>189.71<br>189.71<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>189.72<br>18                                                                                                                                                |
| SEALS FOR CR     | Single brush  | AVG PRESS<br>STATION 5          | (PSIA)  | 637.57<br>7743.170<br>7743.60<br>7743.60<br>7743.60<br>7745.98<br>6645.98<br>665.00<br>775.04<br>775.02<br>775.02<br>775.02<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>775.03<br>77                                                                                                                                                   |
| : BRUSH          | NO. 2         | EN<br>S AVG PRESS<br>STATION 1  | (PSIA)  | 761.07<br>764.07<br>764.07<br>764.07<br>764.07<br>764.07<br>764.07<br>764.07<br>764.07<br>764.07<br>766.06<br>766.26<br>766.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RESEARCH PROGRAM | CONFIGURATION | FLUID: NITROGE<br>RDG AVG SCANS |         | 179 ALL SCNS 180 ALL SCNS 181 ALL SCNS 182 ALL SCNS 184 ALL SCNS 185 ALL SCNS 186 ALL SCNS 186 ALL SCNS 187 ALL SCNS 189 ALL SCNS 190 ALL SCNS 191 ALL SCNS 192 ALL SCNS 203 ALL SCNS 204 ALL SCNS 205 ALL SCNS 205 ALL SCNS 206 ALL SCNS 207 ALL SCNS 208 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

FLUID: NITROGEN

| AVERAG<br>LEAKAG<br>RATE<br>(LBM/S | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 600000000000                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AVERAGE<br>SHAFT<br>SPEED<br>(RPM) | 25079:112:22 254998:112:22 254998:112:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254998:113:22 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | င်္ကေတြက်တဲ့ လိုက်တဲ့ လိုက်တဲ<br>လိုက်တဲ့ လိုက်တဲ့ လိ<br>လိုက်တဲ့ လိုက်တဲ့ လိ |
| AVG TEMP<br>STATION 5<br>(R)       | 159-511<br>155-869<br>166.263<br>165.284<br>210.284<br>210.284<br>155.088<br>155.088<br>155.745<br>155.745<br>157.748<br>183.788<br>183.788<br>183.788<br>183.763<br>177.773<br>177.773<br>177.773<br>180.391<br>180.391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 160.267<br>158.509<br>156.330<br>156.330<br>156.330<br>156.340<br>156.340<br>157.002<br>157.002<br>169.894<br>169.894<br>198.231<br>197.593<br>237.246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 157.534<br>160.292<br>157.521<br>156.283<br>155.721<br>156.721<br>160.145<br>166.449<br>183.139                                                                                                                                                                                                                                                    |
| AVG TEMP<br>STATION 4<br>(R)       | 152.86<br>153.87<br>165.33.08<br>150.05<br>150.05<br>150.05<br>150.05<br>150.05<br>150.05<br>150.05<br>163.28<br>163.28<br>163.28<br>163.28<br>163.28<br>163.28<br>163.28<br>163.28<br>163.28<br>163.28<br>163.28<br>163.28<br>163.28<br>163.28<br>163.28<br>163.28<br>163.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 151.13<br>151.13<br>151.13<br>151.13<br>151.13<br>150.06<br>150.06<br>179.22<br>179.22<br>179.22<br>179.22<br>179.22<br>179.22<br>179.22<br>179.22<br>179.22<br>179.22<br>179.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 154.57<br>154.57<br>152.75<br>151.63<br>151.72<br>152.86<br>153.92<br>156.57<br>161.97                                                                                                                                                                                                                                                             |
| AVG TEMP<br>STATION 3<br>(R)       | 1553.<br>1553.<br>1553.<br>1553.<br>1553.<br>1553.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550.<br>1550. | 152.59<br>151.51<br>151.75<br>151.75<br>151.64<br>151.65<br>152.05<br>178.99<br>178.99<br>176.53<br>176.53<br>176.53<br>176.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 156.05<br>157.73<br>152.73<br>152.73<br>152.76<br>154.21<br>156.86<br>169.73                                                                                                                                                                                                                                                                       |
| AVG TEMP<br>STATION 1<br>(R)       | 150.056<br>150.056<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.057<br>150.05                                                                                                                                                                                                                                                               | 150.051<br>150.051<br>150.051<br>150.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.051<br>160.05 | 1,5,92<br>152.76<br>152.76<br>151.78<br>151.80<br>153.18<br>154.17<br>156.74<br>166.27                                                                                                                                                                                                                                                             |
| AVG PRESS<br>STATION 5<br>(PSIA)   | 587. 82<br>636.78<br>636.78<br>636.78<br>63.26<br>785.92<br>785.92<br>735.79<br>638.33<br>633.32<br>683.33<br>789.84<br>789.84<br>789.84<br>789.86<br>686.57<br>686.57<br>686.60<br>685.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 787.73<br>639.74<br>639.75<br>639.75<br>639.75<br>639.78<br>785.78<br>785.78<br>785.78<br>785.77<br>680.10<br>680.10<br>680.10<br>680.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 509.24<br>777.17<br>720.89<br>670.11<br>670.11<br>670.11<br>563.10<br>563.10<br>710.39<br>758.72<br>784.70                                                                                                                                                                                                                                         |
| AVG PRESS<br>STATION 4<br>(PSIA)   | 800.29<br>780.15<br>765.17<br>753.49<br>738.44<br>719.62<br>740.29<br>767.41<br>784.79<br>812.38<br>810.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 799.66<br>780.98<br>757.56<br>743.26<br>748.21<br>772.34<br>772.34<br>772.34<br>800.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 790.53<br>767.92<br>758.01<br>744.95<br>733.55<br>728.01<br>736.72<br>744.47<br>756.10<br>773.21                                                                                                                                                                                                                                                   |
| AVG PRESS<br>STATION 3<br>(PSIA)   | 800.56<br>765.52<br>755.52<br>754.74<br>725.18<br>725.05<br>725.18<br>740.78<br>757.84<br>812.68<br>810.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 799.85<br>766.06<br>757.89<br>757.89<br>738.52<br>738.61<br>778.64<br>800.14<br>810.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 790.69<br>768.02<br>758.22<br>733.97<br>731.39<br>736.96<br>756.40<br>773.36                                                                                                                                                                                                                                                                       |
| AVG PRESS<br>STATION 1<br>(PSIA)   | 810.53<br>810.65<br>810.65<br>810.65<br>811.19<br>801.11<br>809.97<br>809.97<br>806.47<br>806.47<br>812.34<br>812.34<br>812.34<br>812.34<br>812.34<br>812.34<br>812.34<br>812.34<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89<br>813.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8809.90<br>8809.90<br>8809.90<br>8809.82<br>8810.33<br>8811.02<br>8801.38<br>8801.38<br>8801.38<br>8801.38<br>8801.39<br>8801.34<br>8801.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 807.72<br>800.54<br>797.14<br>792.22<br>788.84<br>788.84<br>783.03<br>782.41<br>782.73<br>783.60                                                                                                                                                                                                                                                   |
| ID: NITROGEN AVG SCANS P           | 293 ALL SCNS 2295 ALL SCNS 2295 ALL SCNS 2295 ALL SCNS 2297 ALL SCNS 3302 ALL SCNS 3303 ALL SCNS 3303 ALL SCNS 3313 ALL SCNS 3314 ALL SCNS 3315 ALL SCNS 3316 ALL SCNS 3317 ALL SCNS 3316 ALL SCNS 3317 ALL SCNS 3318 ALL SCNS 3318 ALL SCNS 3318 ALL SCNS 3316 ALL SCNS 331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL                                                                                                                                                                                                                                                                                                             |
| FLUID<br>RDG                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>โ</i> ล้ ค็ ค็ ค็ ค็ ค็ ค็ คิ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b></b> କ୍ଷ୍ୟୁଲ୍ଲ ଅନ୍ୟୁକ୍ତ ଅନ୍                                                                                                                                                                                                                           |

CONFIGURATION NO. 4 2 Brushes tightly packed .. positions 3 & 4

| FLUID: NITROGEN<br>RDG AVG SCANS |         | 362 ALL SCNS 363 ALL SCNS 364 ALL SCNS 365 ALL SCNS 366 ALL SCNS 367 ALL SCNS 377 ALL SCNS 377 ALL SCNS 377 ALL SCNS 378 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|----------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| N<br>AVG PRESS<br>STATION 1      | (PSIA)  | 810. 21<br>810. 21<br>801. 32<br>805. 32<br>798. 43<br>791. 92<br>788. 67<br>787. 68<br>789. 787. 68<br>789. 787. 68<br>789. 787. 68<br>789. 787. 68<br>789. 787. 68<br>789. 789. 789. 789. 789. 789. 789. 789.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AVG PRESS<br>STATION 2           | (PSIA)  | 810.49<br>805.57<br>805.57<br>805.57<br>805.57<br>807.53<br>792.33<br>792.33<br>792.33<br>792.33<br>793.10<br>804.81<br>807.85<br>794.55<br>794.55<br>794.55<br>795.68<br>807.83<br>807.83<br>807.83<br>808.81<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87<br>799.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| AVG PRESS<br>STATION 5           | (PSIA)  | 7.754.06.44<br>7.85.46.44<br>7.86.44<br>7.87.1.26<br>6.70.17<br>7.88.93<br>6.89.58<br>6.89.58<br>6.89.59<br>7.89.66<br>6.89.69<br>7.89.66<br>6.89.69<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58<br>6.73.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| AVG TEMP<br>STATION 1            | (R)     | 150.99<br>150.09<br>149.88<br>149.49<br>149.49<br>149.49<br>149.33<br>149.49<br>149.33<br>149.48<br>149.33<br>149.48<br>149.33<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70<br>149.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| AVG TEMP<br>STATION 2            | (R)     | 152.31<br>151.42<br>151.42<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>150.36<br>15                                                                                                                                                |  |
| AVG TEMP<br>STATION 5            | (R)     | 165.98<br>164.97<br>163.81<br>163.81<br>163.81<br>163.81<br>163.81<br>163.81<br>163.81<br>163.81<br>163.81<br>163.81<br>163.81<br>163.81<br>163.81<br>163.81<br>163.81<br>163.81<br>163.81<br>163.81<br>163.81<br>163.81<br>164.82<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>164.83<br>16                                                                                                                                                |  |
| AVERAGE<br>SHAFT<br>SPEED        | (RPM)   | 50277.5.5.5.5.5.5.5.5.2.8.4.6.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| AVERAGE<br>LEAKAGE<br>RATE       | (LBM/S) | 0.127<br>0.127<br>0.127<br>0.236<br>0.236<br>0.236<br>0.345<br>0.369<br>0.369<br>0.369<br>0.369<br>0.265<br>0.265<br>0.265<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252<br>0.252 |  |
| DELTA-P<br>STA 1-5               | (PSID)  | 23.77<br>51.06<br>74.65<br>1175.25<br>125.25<br>126.25<br>127.33<br>129.93<br>121.32<br>121.32<br>121.32<br>121.32<br>121.32<br>121.33<br>121.33<br>121.33<br>121.33<br>121.33<br>121.33<br>122.34<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93<br>123.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| DELTA-P<br>STA 1-2               | (PSID)  | 7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.220<br>7.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |

|   | DELTA-P<br>STA 1-2     | (PSID)  | 5-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---|------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | DELTA-P<br>STA 1-5     | (DISA)  | 22. 22. 22. 22. 22. 22. 22. 22. 22. 22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | AVERAGE<br>LEAKAGE     | (LBM/S) | 0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0.0053<br>0. |
|   | AVERAGE<br>SHAFT       | (RPM)   | 22222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | AVG TEMP<br>STATION 5  | (R)     | 100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32<br>100.053.32                                                                                                                                                                                                                                                                                                                                   |
|   | AVG TEMP<br>STATION 2  | (R)     | 150.150<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.178<br>150.17                                                                                                                |
| • | AVG TEMP<br>STATION 1  | (R)     | 150.94<br>150.94<br>150.99<br>150.99<br>150.99<br>150.99<br>150.99<br>150.99<br>150.99<br>150.99<br>150.99<br>150.99<br>150.99<br>150.99<br>150.99<br>150.99<br>150.99<br>150.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | AVG PRESS<br>STATION 5 | (PSIA)  | 7.86<br>616.23<br>616.23<br>616.23<br>616.23<br>606.23<br>606.23<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606.33<br>606. |
|   | AVG PRESS<br>STATION 2 | (PSIA)  | 8004-28<br>8004-28<br>8004-28<br>800-29<br>800-29<br>8004-28<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29<br>8004-29                                                                                                                 |
| ı | AVG PRESS<br>STATION 1 | (PSIA)  | 793. 35<br>795. 55<br>795. 5                                                                                                                |
|   | AVG SCANS F            |         | AALL SCNS AALL S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | FLUID:                 |         | 44444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

CONFIGURATION NO. 5 3 Brushes equally space: pos 1,3,5

SEALS FOR

BRUSH

RESEARCH PROGRAM:

AVERAGE LEAKAGE RATE (LBM/S) AVERAGE SHAFT SPEED (RPM) 5 AVG TEMP STATION 5 175.839 167.559 167.559 167.559 167.559 167.559 167.559 167.559 163.277 163.285 163.286 163.286 163.287 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 163.289 4 AVG TEMP STATION 4 166.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 155.23 15 2 N AVG TEMP STATION 2 160.82 151.37 150.34 150.23 150.23 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 150.17 15  $\blacksquare$ AVG TEMP STATION 1 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.35 1500.3 AVG PRESS STATION 5 796.60 771.03 701.30 701.30 701.30 701.30 701.30 701.30 701.30 701.30 701.57 701.30 701.57 701.57 701.57 701.57 701.57 701.57 AVG PRESS STATION 4 797.54 775.04 775.04 738.36 713.35 713.35 692.90 677.12 677.12 677.12 671.51 671.51 709.46 712.61 745.13 768.45 779.67 766.69 778.30 720.36 720.36 720.36 720.36 730.37 740.50 724.77 746.58 768.58 (PSIA) AVG PRESS STATION 2 779.55 773.09 773.09 768.18 744.01 729.87 727.39 727.39 727.39 727.39 727.39 727.39 (PSIA) 776.70 776.70 776.70 776.70 771.70 772.98 772.98 772.98 772.108 772.108 772.108 772.135 773.30 774.20 775.66 779.80 SS 797.62 778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 7778.76 AVG PRES STATION (PSIA) D: NITROGEN AVG SCANS A FLUID: RDG A 

|                |               | AVERAGE<br>LEAKAGE<br>RATF       | (LBM/S) | 0.14<br>0.00<br>0.00<br>0.00<br>0.00<br>0.12<br>0.17<br>0.13<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000000000000000000000000000000000000                                                           |                                                                                                 | 0.00<br>0.00<br>0.19<br>0.20<br>0.20<br>0.17<br>0.17                                                      | 0.000000000000000000000000000000000000                                                                     |
|----------------|---------------|----------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 200 1318       |               | AVERAGE<br>SHAFT<br>SPFFD        | (RPM)   | 1499899<br>1499899<br>1499899<br>1499899<br>1499899<br>1499899<br>1499899<br>1499899<br>1499899<br>149989<br>149989<br>149989<br>149989<br>149989<br>149989<br>149989<br>149989<br>149989<br>149989<br>149989<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>14998<br>1 | 25240.3<br>25240.3<br>25240.3<br>252138.8<br>25247.5<br>25182.5<br>25182.5<br>25174.1<br>25337.2 | ၛၮၮၮၮၮၮၮၮၮၮၮ<br>ၯၜၴၜၟၜၟၜၜၜၜၜၜၜၜၜၜ<br>ႜ                                                          | 35117.5<br>35117.5<br>35117.3<br>35021.3<br>35245.3<br>35245.3<br>3711.3<br>32790.0<br>34045.9<br>34214.4 |                                                                                                            |
| UNC 1 EK : 14. |               | AVG TEMP<br>STATION 5            | (R)     | 159.955<br>161.353<br>1864.935<br>1874.607<br>157.879<br>155.127<br>155.127<br>156.731<br>156.731<br>158.415<br>159.901<br>168.278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 185.7/5<br>206.729.431<br>195.048<br>185.243<br>187.051<br>181.362<br>181.362<br>185.399         | 177.785<br>163.045<br>169.045<br>159.067<br>159.321<br>159.360<br>159.296<br>159.298<br>160.213 | 174.346<br>235.007<br>234.636<br>203.608<br>207.198<br>192.043<br>191.619<br>196.647<br>203.356           | 168.861<br>161.930<br>161.930<br>160.733<br>160.733<br>160.115<br>160.301<br>160.633<br>162.284<br>173.049 |
| רבורכ פאצ      |               | AVG TEMP<br>STATION 4            | (R)     | 154.68<br>155.27<br>158.08<br>173.56<br>173.56<br>151.17<br>151.21<br>153.50<br>157.32<br>165.22<br>166.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 185.02<br>176.14<br>176.14<br>163.64<br>162.20<br>162.52<br>164.34<br>164.34                     | 166.22<br>166.22<br>148.19<br>148.83<br>148.83<br>148.73<br>148.65<br>168.65<br>168.65          | 268.12<br>197.18<br>174.15<br>177.01<br>163.00<br>165.90<br>171.34<br>171.34                              | 153.13<br>153.13<br>153.13<br>150.78<br>150.31<br>150.34<br>150.39<br>151.51<br>162.81                     |
| וו: רור        |               | AVG TEMP<br>STATION 2            | (R)     | 153.49<br>155.24<br>155.24<br>155.24<br>150.93<br>150.99<br>154.96<br>154.96<br>158.33<br>161.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.5.2.2<br>163.3.30<br>163.3.30<br>159.0.1<br>159.0.34<br>159.93<br>159.93<br>159.93            | 168.53<br>168.53<br>168.53<br>168.53<br>168.53<br>168.53<br>169.51                              | 153.78<br>212.16<br>212.16<br>167.26<br>166.25<br>161.52<br>165.30<br>165.30<br>165.30                    | 151.35<br>151.35<br>150.60<br>150.14<br>149.89<br>149.71<br>149.84<br>149.93<br>150.01<br>150.70           |
| IESI FALILIIT  |               | AVG TEMP<br>STATION 1            | (R)     | 150.84<br>150.78<br>150.78<br>150.39<br>150.34<br>150.15<br>150.14<br>155.40<br>155.40<br>155.40<br>166.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 153.47<br>1552.84<br>1552.07<br>151.09<br>152.36<br>152.36<br>152.36                             | 148.15<br>147.81<br>147.82<br>147.83<br>147.99<br>148.03<br>148.03<br>147.87<br>147.87          | 147.85<br>158.26<br>157.48<br>157.53<br>157.53<br>156.14<br>156.96<br>157.62                              | 150.08<br>150.10<br>150.10<br>149.97<br>149.88<br>149.88<br>149.95<br>150.07<br>150.06<br>150.84           |
| £              | e: pos 1,3,5  | AVG PRESS<br>STATION 5           | (PSIA)  | 603.47<br>657.34<br>7758.50<br>7758.71<br>7750.31<br>7720.69<br>650.17<br>650.17<br>550.83<br>754.64<br>704.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 783.49<br>7057.91<br>659.57<br>559.11<br>557.11<br>669.46<br>669.40<br>768.56                    | 752.23<br>754.17<br>754.17<br>703.11<br>703.11<br>705.23<br>706.68<br>706.68                    | 781.77<br>760.49<br>760.49<br>661.36<br>661.36<br>601.64<br>593.57<br>593.85<br>644.49                    | 747.27<br>680.42<br>628.73<br>577.79<br>522.77<br>571.62<br>618.69<br>668.68                               |
| RYOGENIC APP   | lually space: | AVG PRESS<br>STATION 4           | (PSIA)  | 780.29<br>766.91<br>741.04<br>715.79<br>694.12<br>691.15<br>674.54<br>691.91<br>703.29<br>716.82<br>741.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 783.67                                                                                           | 782.98<br>768.58<br>741.57<br>714.98<br>683.10<br>663.10<br>665.67<br>743.43<br>768.85          | 782.73                                                                                                    | 749.40<br>714.66<br>683.11<br>655.67<br>600.92<br>625.65<br>625.65<br>674.02<br>771.26<br>771.26           |
| ALS FOR C      | 8 Brushes eq  | AVG PRESS<br>STATION 2           | (PSIA)  | 779.87<br>773.26<br>759.50<br>746.14<br>738.00<br>722.21<br>749.42<br>761.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del>~</del>                                                                                     | 781.97<br>775.39<br>763.33<br>751.36<br>741.30<br>726.98<br>737.55<br>747.09<br>757.16          | 81.                                                                                                       | 756.66<br>740.01<br>726.49<br>713.44<br>700.00<br>686.37<br>695.85<br>705.54<br>714.93<br>725.89<br>739.96 |
| RAM: B         | NO. 5         | AVG PRESS<br>STATION 1           | (PSIA)  | 778.58<br>778.69<br>778.99<br>778.91<br>778.91<br>778.28<br>778.35<br>776.25<br>777.94<br>773.14<br>775.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  |                                                                                                 |                                                                                                           |                                                                                                            |
|                | FIGURATION    | FLUID: NITROGEN<br>RDG AVG SCANS |         | 529 ALL SCNS<br>530 ALL SCNS<br>531 ALL SCNS<br>532 ALL SCNS<br>534 ALL SCNS<br>536 ALL SCNS<br>536 ALL SCNS<br>539 ALL SCNS<br>539 ALL SCNS<br>540 ALL SCNS<br>541 ALL SCNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ######################################                                                           | 44444444444                                                                                     |                                                                                                           |                                                                                                            |

| AVERAGE                       | LEAKAGE<br>RATE<br>(LBM/S) | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AVERAGE                       | SPEED<br>(RPM)             | 22222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AVG TEMP                      | (R)                        | 155. 368<br>155. 368<br>155. 368<br>155. 329<br>155. 329<br>155. 329<br>155. 329<br>155. 329<br>155. 329<br>155. 325<br>165. 325<br>165                                                                                                                                                                                                                                                                                                                                                   |
| AVG TEMP                      | (R)                        | 1550.054<br>1650.054<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.055<br>1650.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AVG TEMP                      | S!A! 10N 3<br>(R)          | 155.39<br>155.39<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>155.30<br>15                                                                                                                                                |
| AVG TEMP                      | = ~                        | 115050992222238888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AVG PRESS                     | <b>8</b> 0.                | 757.757.757.757.757.757.757.757.757.757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| AVG PRESS                     | <u>z</u> _                 | 744.8<br>777.7<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>777.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8<br>778.8 |
| AVG PRESS                     | 110N<br>S1A)               | 775.73.27.75.75.75.75.75.75.75.75.75.75.75.75.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AVG PRESS                     | <u> </u>                   | 781.39<br>781.28<br>781.28<br>781.28<br>780.70<br>780.70<br>780.70<br>780.70<br>780.70<br>781.57<br>781.57<br>781.57<br>784.15<br>784.15<br>784.15<br>787.10<br>787.10<br>787.10<br>787.10<br>787.10<br>787.10<br>787.10<br>787.10<br>787.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FLUID: NITROGEN RDG AVG SCANS |                            | 594 ALL SCNS 595 ALL SCNS 595 ALL SCNS 597 ALL SCNS 597 ALL SCNS 599 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

AVERAGE AVG TEMP AVG TEMP AVG TEMP FLUID: NITROGEN
RDG AVG SCANS AVG PRESS AVG PRESS AVG PRESS AVG TEMP

| VERAGE<br>EAKAGE<br>SATE           | (L <b>BM</b> /S) | 00.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| AVERAGE /<br>SHAFT<br>SPEED        | (RPM)            | 335043.4<br>149228.1<br>14923.7<br>14923.7<br>14923.7<br>14923.7<br>14923.7<br>14923.7<br>14923.7<br>14923.7<br>14923.7<br>14923.7<br>14923.7<br>14923.7<br>14923.7<br>14923.7<br>14923.7<br>14923.7<br>14923.7<br>14923.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>1772.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16033.7<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| AVG TEMP<br>STATION 5              | (R)              | 158. 111 155. 470 155. 470 155. 470 155. 470 155. 470 155. 470 155. 470 155. 470 155. 470 155. 488 155. 688 160. 370 155. 588 160. 370 155. 588 160. 370 155. 588 160. 370 155. 588 160. 370 155. 588 160. 370 155. 588 160. 370 155. 588 160. 370 155. 588 160. 370 155. 588 160. 370 155. 588 160. 370 155. 588 160. 370 155. 588 160. 370 155. 588 160. 370 155. 588 160. 370 155. 588 160. 370 155. 588 160. 370 155. 588 160. 370 155. 588 160. 370 155. 388 160. 370 155. 388 160. 370 155. 388 160. 370 155. 388 160. 370 155. 388 160. 370 155. 388 160. 370 155. 388 160. 370 155. 388 160. 370 155. 388 160. 370 155. 388 160. 370 155. 388 160. 370 155. 388 160. 370 155. 388 160. 370 155. 388 160. 370 155. 388 160. 370 155. 388 160. 370 155. 388 160. 370 155. 388 160. 370 155. 388 160. 370 173. 388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| AVG TEMP<br>STATION 4              | (R)              | 151.82<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83<br>1550.83                                                                                                             |  |
| AVG TEMP<br>STATION 2              | (R)              | 1499<br>1550.53<br>1499.99<br>1499.99<br>1499.99<br>1499.99<br>1500.99<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.65<br>177.6 |  |
| AVG TEMP<br>STATION 1              | (R)              | 149.50.59 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.059 150.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| AVG PRESS<br>STATION 5             | (PSIA)           | 763.41<br>763.41<br>763.84<br>5613.94<br>6613.94<br>6613.94<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765.72<br>765                                                                                                                                                                                                                                                                                                                                                                            |  |
| AVG PRESS<br>STATION 4             | (PSIA)           | 771.<br>7744.90<br>7744.90<br>7724.90<br>7727.25<br>7727.25<br>7727.25<br>7727.25<br>7727.25<br>7727.25<br>7737.90<br>7737.90<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73<br>7737.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| AVG PRESS<br>STATION 2             | (PSIA)           | 775-75-75-75-75-75-75-75-75-75-75-75-75-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| WG PRESS                           | (PSIA)           | 780.44<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7782.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95<br>7779.95                                                                                                             |  |
| FLUID: NITROGEN<br>RDG AVG SCANS A |                  | 662 ALL SCNS<br>665 ALL SCNS<br>666 ALL SCNS<br>666 ALL SCNS<br>667 ALL SCNS<br>667 ALL SCNS<br>677 ALL SCNS<br>677 ALL SCNS<br>677 ALL SCNS<br>678 ALL SCNS<br>678 ALL SCNS<br>678 ALL SCNS<br>679 ALL SCNS<br>670 ALL SCNS<br>670 ALL SCNS<br>670 ALL SCNS<br>670 ALL SCNS<br>671 ALL SCNS<br>672 ALL SCNS<br>673 ALL SCNS<br>673 ALL SCNS<br>674 ALL SCNS<br>675 ALL SCNS<br>675 ALL SCNS<br>675 ALL SCNS<br>675 ALL SCNS<br>676 ALL SCNS<br>677 ALL SCNS<br>678 ALL SCNS<br>678 ALL SCNS<br>678 ALL SCNS<br>678 ALL SCNS<br>679 ALL SCNS<br>670 A                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |

BAROMETER: 14.165 PSIA BRUSH SEALS FOR CRYOGENIC APPLICATIONS TEST FACILITY: CCL - CELL2 Single Brush - position 1 œ RESEARCH PROGRAM: CONFIGURATION NO.

| DELTA-P<br>STA 1-5<br>(PSID)             | 25.25.25.25.25.25.25.25.25.25.25.25.25.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AVERAGE<br>LEAKAGE<br>RATE<br>(LBM/S)    | 0.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AVERAGE<br>SHAFT<br>SPEED<br>(RPM)       | ݵݡݥݡݡݡݡݡݡݡݡݡݡݡݡݥݡݥݡݥݡݥݡݥݡݥݡݥݡݥݡݥݡݥݡݥݡݥݥݥݡݥݥݥݡݥݡ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AVG TEMP<br>STATION 5<br>(R)             | 155. 25 4 4 4 4 8 8 8 8 4 4 8 4 8 4 8 8 8 4 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AVG TEMP<br>STATION 1<br>(R)             | 150.151<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>150.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.083<br>160.08 |
| AVG PRESS<br>STATION 5<br>(PSIA)         | 7.3.7.4.6.<br>7.3.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| OGEN<br>AVG PRESS<br>STATION 1<br>(PSIA) | 789.187<br>785.133<br>785.333<br>785.40<br>785.40<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93<br>785.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FLUID: NITROGEN RDG SCAN                 | 740<br>740<br>740<br>740<br>740<br>740<br>740<br>740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|               | DELTA-P<br>STA 1-5           | (PSID)  | 251.53<br>246.81<br>254.64<br>254.64<br>277.61<br>277.61<br>277.61<br>277.61<br>277.61<br>277.61<br>277.61<br>277.61<br>277.61<br>288.93<br>277.76<br>288.93<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>305.24<br>30 |
|---------------|------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | AVERAGE<br>LEAKAGE<br>DATE   | (S/WBJ) | 0.3952<br>0.3872<br>0.3872<br>0.3872<br>0.3872<br>0.3872<br>0.3872<br>0.3872<br>0.3972<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0.3973<br>0. |
|               | AVERAGE<br>SHAFT<br>Speen    | (RPM)   | ဎႋၹၟၹၟႜၹၟၹၟၹၟၹၟၹၟၹၟၹၟၹၟၹၟၹၟၹၟၹၟၹၟၹၟၹၟၹၟၹၟ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | AVG TEMP<br>STATION 5        | (R)     | 153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>153.17<br>15 |
| - position l  | AVG TEMP<br>STATION 1        | (R)     | 149.489<br>149.489<br>149.659<br>149.977<br>149.977<br>149.977<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659<br>149.659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Single Brush  | AVG PRESS<br>STATION 5       | (PSIA)  | 514.77<br>520.68<br>520.68<br>5497.59<br>5607.68<br>5607.68<br>5607.68<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.69<br>5607.6                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NO. 8         | EN<br>AVG PRESS<br>STATION 1 | (PSIA)  | 766. 30<br>767. 30<br>767. 30<br>767. 30<br>765. 3                                                                                                                |
| CONFIGURATION | FLUID: NITROGEN<br>RDG SCAN  |         | 740 55<br>740 55<br>740 55<br>740 55<br>740 55<br>740 65<br>740 65<br>740 65<br>740 65<br>740 65<br>740 65<br>740 65<br>740 65<br>740 65<br>740 72<br>740 88<br>740 88<br>740 88<br>740 99<br>740 99<br>740 99<br>740 99<br>740 99<br>740 99<br>740 99<br>740 99<br>740 100<br>740 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

RESEARCH PROGRAM: BRUSH SEALS FOR CRYOGENIC APPLICATIONS TEST FACILITY: CCL - CELL2 BAROMETER: 14.165 PSIA

| RESEARCH PROGRAM              | RAM: BRUSH<br>No. 8              | SEALS FOR CRY<br>Single Brush      | CRYOGENIC APPL.<br>sh - position ] | APPLICATIONS TES             | FACILITY:                          | ננו - נפווצ                           | BARUME EKT. 1                |
|-------------------------------|----------------------------------|------------------------------------|------------------------------------|------------------------------|------------------------------------|---------------------------------------|------------------------------|
| FLUID: NITROGEN RDG SCAN A S  | AVG PRESS<br>STATION 1<br>(PSIA) | AVG PRESS<br>STATION 5<br>(PSIA)   | AVG TEMP<br>STATION 1<br>(R)       | AVG TEMP<br>STATION 5<br>(R) | AVERAGE<br>SHAFT<br>SPEED<br>(RPM) | AVERAGE<br>LEAKAGE<br>RATE<br>(LBM/S) | DELTA-P<br>STA 1-5<br>(PSID) |
|                               | 755.15                           | 335.07                             | 149.77                             | 153.80                       | -6.3                               | 0.407                                 | 420.08                       |
|                               | 755.15<br>755.15                 | 337.30<br>341.95                   | 149.77<br>149.89                   | 153.64<br>153.80             | 6.0.                               | 0.430<br>0.418                        | 417.85                       |
|                               | 754.90<br>755.01                 | 334.80<br>343.13                   | 149.77<br>149.54                   | 153.80<br>153.80             | . 4.                               | 0.415                                 | 420.10<br>411.89             |
|                               | 755.07                           | 342.85<br>354.10                   | 149.53<br>149.83                   | 153.80<br>153.80             | و.<br>4.0                          | 0.415                                 | 412.22<br>401.44             |
|                               | 754.03                           | 315.70                             | 149.42                             | 153.80                       | 94                                 | 0.431                                 | 438.32                       |
|                               | 752.60                           | 297.71                             | 149.65                             | 153.95                       | 90,4                               | 0.426                                 | 454.88                       |
|                               | 752.50                           | 295.43                             | 149.71                             | 153.80                       | 999                                | 0.430                                 | 457.07                       |
|                               | 753.22                           | 300.15                             | 149.71                             | 153.96                       | 4.                                 | 0.425                                 | 453.07                       |
|                               | 753.08<br>752.83                 | 305.57<br>306.67                   | 149.54<br>149.89                   | 153.80<br>153.72             | 2. d.                              | 0.42/                                 | 446.16                       |
|                               | 752.15                           | 2 <b>83.4</b> 8<br>2 <b>80.</b> 15 | 149.65<br>149.65                   | 153.64<br>154.27             | -6-<br>-6.3                        | 0.432<br>0.441                        | 468.67<br>472.10             |
| . — –                         | 751.49                           | 270.92                             | 149.54                             | 154.11                       | 6.3                                | 0.431                                 | 480.57<br>478.69             |
|                               | 751.02                           | 265.84                             | 149.54                             | 153.96                       |                                    | 0.433                                 | 485.18                       |
|                               | 750.89                           | 265.64                             | 149.71                             | 153.49                       | , 6, 4                             | 0.429                                 | 485.26<br>478<br>06          |
|                               | 750.58                           | 262.58                             | 149.77                             | 153.80                       | . 6.<br>6.                         | 0.456                                 | 487.99                       |
|                               | 749.56<br>749.24                 | 248.70<br>242.31                   | 149.65                             | 154.27                       | 4.4.                               | 0.448                                 | 500.85<br>506.93             |
|                               | 749.14<br>749.70                 | 241.55<br>239.94                   | 149.83<br>149.89                   | 154.03<br>154.03             | -6.3<br>4.6.3                      | 0.441                                 | 509.76<br>509.76             |
|                               | 749.32                           | 240.85                             | 149.65                             | 154.27<br>153.41             | 4.6-3                              | 0.444<br>0.440                        | 508.47<br>506.53             |
| ••••                          | 750.18                           | 250.02                             | 149.65                             | 153.80                       | ,                                  | 0.440                                 | 500.17                       |
| • • • •                       | 749.52                           | 253.00                             | 149.95                             | 153.33                       | , m                                | 0.452                                 | 496.52<br>503 98             |
|                               | 749.52                           | 242.37                             | 149.65                             | 153.65                       | 9.00                               | 0.447                                 | 507.15                       |
|                               | 749.17                           | 238.42<br>237.03                   | 149.83                             | 153.41                       | 4.0                                | 0.445                                 | 511.62                       |
|                               | 749.11<br>749.21                 | 237.73<br>241.33                   | 149.59<br>149.65                   | 153.80                       |                                    | 0.443                                 | 511.38                       |
|                               | 748.72                           | 247.25<br>255.36                   | 149.89                             | 153.72                       | 2.00<br>4.00                       | 0.436                                 | 501.48<br>495.02             |
|                               | 750.05<br>748.93                 | 254.11<br>243.77                   | 149.65<br>149.65                   | 153.57                       | ကို ကို                            | 0.44/                                 | 495.94<br>505.15             |
|                               | 748.96<br>749.21                 | 242.65<br>239.32                   | 149.48<br>149.65                   | 153.64<br>154.11             | -6-4<br>-6-4                       | 0.442                                 | 506.31<br>509.89             |
|                               | 748.76<br>748.65<br>748.65       | 236.12<br>237.30<br>238.35         | 149.60<br>149.71<br>149.59         | 153.5/<br>153.80<br>153.57   | 5 4 4<br>5 4 4                     | 0.442<br>0.441<br>0.441               | 511.34<br>510.23             |
|                               | 748.41                           | 245.85<br>251.40                   | 149.71                             | 153.65<br>153.80             | 44                                 | 0.437                                 | 502.56<br>497.44             |
| 740 161<br>740 162<br>740 163 | 749.21<br>748.89<br>740.17       | 255.02<br>247.94<br>243.77         | 149.83<br>149.83<br>140.95         | 153.65<br>153.88<br>153.96   | 2.00 A                             | 0.446<br>0.442<br>0.443               | 494.18<br>500.95<br>505.41   |
|                               | 748.37                           | 239.61                             | 149.83                             | 152.87                       | 4.6-                               | 0.442                                 | 508.76                       |

| BAROMETER:             |               | DELTA-P<br>STA 1-5<br>(PSID)           | 512. 69<br>511. 47<br>509. 49<br>509. 49<br>509. 69<br>509. 69<br>509. 69<br>509. 69<br>509. 69<br>509. 69<br>509. 69<br>509. 69<br>509. 76<br>509. 76<br>509 |
|------------------------|---------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ככר - כברדק            |               | AVERAGE<br>LEAKAGE<br>RATE<br>(LBM/S)  | 0.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ST FACILITY:           |               | AVERAGE<br>SHAFT<br>SPEED<br>(RPM)     | ĠĠġĠĠġġġĠĠġĠġġĠġġġġġġġġġġġġġġġġġġġġġġġ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ICATIONS TEST          |               | AVG TEMP<br>STATION 5<br>(R)           | 153.88<br>154.35<br>154.35<br>154.35<br>154.35<br>154.27<br>154.27<br>154.27<br>154.27<br>154.50<br>154.42<br>154.42<br>154.42<br>154.42<br>154.43<br>154.52<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35<br>154.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CRYDGENIC APPLICATIONS | - position    | AVG TEMP<br>STATION 1<br>(R)           | 149.73<br>149.83<br>149.83<br>149.83<br>149.83<br>149.83<br>149.65<br>149.83<br>149.83<br>149.83<br>149.83<br>150.07<br>150.07<br>150.07<br>150.01<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SEALS FOR CR           | Single Brush  | AVG PRESS<br>STATION 5<br>(PSIA)       | 236.556 238.556 238.556 238.556 238.556 2238.01 2238.01 2238.01 2236.02 2236.71 2236.72 2236.72 2236.72 2236.72 2236.72 2236.72 2236.72 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.74 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2236.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.73 2366.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| : BRUSH                | NO. 8         | EN<br>AVG PRESS<br>STATION 1<br>(PSIA) | 748.75<br>748.75<br>748.75<br>748.75<br>748.75<br>748.55<br>748.55<br>748.55<br>748.55<br>748.66<br>748.66<br>748.66<br>748.66<br>748.66<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76<br>748.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RESEARCH PROGRAM       | CONFIGURATION | FLUID: NITROGEN RDG SCAN               | 740 165<br>740 166<br>740 166<br>740 169<br>740 170<br>740 170<br>740 171<br>740 173<br>740 183<br>740 183<br>740 202<br>740 203<br>740 203<br>740 203<br>740 203<br>740 203<br>740 213<br>740 213<br>740 213<br>740 213<br>740 213<br>740 213<br>740 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

14.165 PSIA

| SS SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CONFIGURATION NO             | ON NO. 8                       | Single Brush        | - position            | -                     |                  |                              |                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------|---------------------|-----------------------|-----------------------|------------------|------------------------------|--------------------|--|
| (PSIA) (PSIA) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NITR                         | OGEN<br>AVG PRESS<br>STATION 1 | AVG PRES<br>STATION | AVG TEMP<br>STATION 1 | AVG TEMP<br>STATION 5 | AVERAGE<br>SHAFT | AVERAGE<br>LEAKAGE           | DELTA-P<br>STA 1-5 |  |
| 742.64 138.23 150.36 1155.36 -6.3 0.455 742.56 1138.23 150.36 1156.38 1156.28 1150.29 1150.29 1154.89 1157.78 1150.59 1150.29 1150.29 1154.89 1157.78 1150.59 1150.29 1150.29 1154.89 1157.78 1150.59 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29 1150.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | (PSIA)                         | (PSIA)              | (R)                   | (R)                   | (RPM)            | (LBM/S)                      | (PSID)             |  |
| 772.56 138.86 150.48 154.89 154.89 154.89 154.89 154.89 154.89 156.24 154.89 156.24 154.89 156.24 154.89 156.27 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 156.28 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                           | 742.64                         | 138.23              | 150.36                | 155.36                | -6.3             | 0.454                        | 604.41             |  |
| 742.53 143.78 150.24 155.82 -9.4 0.048 742.53 143.78 150.24 155.82 -9.4 0.048 742.53 140.80 150.18 150.42 155.82 -9.4 0.048 742.82 140.80 150.18 150.18 154.81 -9.4 0.0455 742.83 119.21 150.18 150.18 154.89 -9.4 0.0455 741.83 119.21 150.18 150.18 154.89 -6.3 0.0455 741.85 119.21 150.18 150.18 154.89 -6.3 0.0455 741.85 119.21 150.18 150.18 154.89 -6.3 0.0455 741.85 119.81 150.18 150.18 154.89 -6.3 0.0455 741.85 119.81 150.18 150.18 154.89 -6.3 0.0455 740.89 100.89 1100.18 154.89 -6.3 0.0455 740.89 100.89 1100.18 154.89 -6.3 0.0455 740.89 100.89 1100.18 154.89 -6.3 0.0455 740.89 100.89 1100.18 154.43 -6.3 0.0455 740.89 1100.19 150.18 154.43 -6.3 0.0455 740.89 1100.19 150.18 154.43 -6.3 0.0455 740.89 1100.19 150.18 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.43 -6.3 0.0455 740.89 1100.19 154.45 -6.3 0.0455 740.89 1100.19 154.45 -6.3 0.0455 740.89 1100.19 154.45 -6.3 0.0455 740.89 1100.19 154.45 -6.3 0.0455 740.89 1100.19 154.45 -6.3 0.0455 740.89 1100.19 154.45 -6.3 0.0455 740.89 1100.19 154.45 -6.3 0.0455 740.89 1100.19 154.45 -6.3 0.0455 740.89 1100.19 154.45 -6.3 0.0455 740.89 1100.19 154.45 -6.3 0.0455 740.89 1100.19 154.45 -6.3 0.0455 740.89 1100.19 154.45 -6.3 0.0455 740.89 1100.19 154.45 -6.3 0.0455 740.89 1100.19 154.45 -6.3 0.0455 740.89 1100.19 154.45 -6.3 0.0455 740.89 1100.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                           | 742.56                         | 138.86              | 150.48                | 154.89                | 4.0              | 0.455                        | 603.70             |  |
| 747.78 747.78 747.78 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 747.89 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 233                          | 742.53                         | 143.78              | 150.24                | 154.82                | 4.0              | 0.448                        | 598-75             |  |
| 742.25 143.86 150.13 154.50 -5.3 0.455 742.26 143.86 150.13 154.50 -5.3 143.86 150.13 154.50 -5.3 143.86 150.13 154.50 -5.3 143.86 150.13 154.50 -5.3 143.86 150.13 154.50 -5.3 143.86 150.13 154.50 -5.3 142.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145.50 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52                           | 742.78                         | 150.86              | 150.42                | 154-81                | -6.3             | 0.455                        | 591.92             |  |
| 742.26<br>741.28<br>742.26<br>741.28<br>741.28<br>741.28<br>741.28<br>741.28<br>741.28<br>741.28<br>741.28<br>741.28<br>741.28<br>741.28<br>741.28<br>741.28<br>741.28<br>741.28<br>741.28<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.29<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20<br>741.20 | 256                          | 742.95                         | 143.86              | 150.13                | 154.50                | 4.6              | 0.455                        | 599.09             |  |
| 741.83 126.08 150.18 154.81 -6.3 0.454 741.35 120.04 150.30 150.30 154.81 -6.3 0.455 741.35 120.04 150.30 150.30 154.50 -6.3 0.455 741.59 120.04 150.30 150.30 154.51 -6.3 0.455 741.59 118.03 150.30 154.43 -6.3 0.455 740.89 100.59 150.24 150.30 154.43 -6.3 0.455 740.73 118.03 150.30 150.24 154.35 -6.3 0.455 740.22 100.10 11 150.13 150.13 150.13 154.43 -6.3 0.455 740.22 100.10 11 150.13 150.13 154.42 -6.3 0.455 740.22 100.10 11 150.13 150.13 154.42 -6.3 0.455 740.22 100.10 11 150.13 150.13 154.42 -6.3 0.455 740.22 100.10 11 150.13 150.13 154.42 -6.3 0.455 740.25 87.89 150.10 154.43 -9.4 0.455 740.26 100.87 150.10 154.43 -9.4 0.455 740.27 150.29 150.20 150.20 154.43 -9.4 0.455 740.28 150.29 150.20 150.20 154.43 -9.4 0.455 740.28 150.29 150.20 150.20 154.43 -9.4 0.455 740.28 150.29 150.20 150.20 154.43 -9.4 0.455 740.28 150.29 150.20 150.20 154.43 -9.4 0.455 740.28 150.29 150.20 150.20 154.43 -9.4 0.455 740.28 150.29 150.20 150.20 154.43 -9.4 0.455 740.28 150.29 150.20 150.20 154.43 -9.4 0.455 740.28 150.29 150.20 150.20 154.43 -9.4 0.455 740.20 150.20 150.20 150.20 154.43 -9.4 0.455 740.20 150.20 150.20 150.20 154.43 -9.4 0.455 740.20 150.20 150.20 150.20 154.43 -9.4 0.455 740.20 150.20 150.20 150.20 154.43 -9.4 0.455 740.20 150.20 150.20 150.20 154.43 -9.4 0.455 740.20 150.20 150.20 150.20 154.43 -9.4 0.455 740.20 150.20 150.20 150.20 154.43 -9.4 0.455 740.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                           | 742.26                         | 137.33              | 150.13                | 154.50                | <br>•            | 0.455                        | 604.93             |  |
| 741.35 741.35 741.35 741.35 741.35 741.35 741.52 741.52 741.52 741.52 741.53 741.54 741.55 741.56 741.57 741.59 741.59 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.79 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 740.70 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23                           | 741.83                         | 126.08              | 150.18                | 154.81                | -6.3             | 0.454                        | 615.75             |  |
| 741.28 124.74 150.30 154.10 -6.3 0.455 741.28 124.74 150.30 154.11 -6.3 0.455 741.03 113.79 100.20 150.20 150.30 154.11 -6.3 0.455 740.29 100.29 150.20 150.20 150.20 154.35 -6.3 0.455 740.29 100.20 150.20 150.20 150.20 150.30 154.13 -6.3 0.455 740.29 100.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 83                           | 741.35                         | 119.21              | 150.30                | 154.97                | <b>6</b> .3      | 0.455                        | 622.14             |  |
| 742.16 126.43 150.07 153.10 -6.3 0.455 741.05 118.03 118.03 150.36 154.51 0.454 740.05 118.03 118.03 150.36 154.51 0.454 740.02 118.03 118.03 150.36 150.24 154.35 -9.4 0.454 740.02 118.03 150.24 154.35 -9.4 0.455 740.02 100.59 150.18 150.18 154.19 -6.3 0.455 740.02 100.59 150.18 150.18 154.19 -6.3 0.455 740.02 100.59 150.18 150.18 154.42 -6.3 0.455 740.02 100.59 150.18 150.18 154.42 -6.3 0.455 740.02 100.03 150.18 150.18 154.42 -6.3 0.455 740.02 100.03 150.18 150.18 154.42 -6.3 0.455 740.02 100.03 150.19 154.42 -6.3 0.455 740.02 100.03 150.19 150.10 154.42 -6.3 0.455 740.02 100.03 150.10 150.19 154.42 -9.4 0.455 740.02 100.03 150.03 150.10 154.43 -9.4 0.455 740.02 100.03 150.03 150.03 154.43 -9.4 0.455 740.02 100.03 150.03 154.43 -9.4 0.455 740.02 100.03 150.03 154.43 -9.4 0.455 740.02 100.03 150.03 154.43 -9.4 0.455 740.03 150.03 150.03 154.43 -9.4 0.455 740.03 150.03 150.03 154.43 -9.4 0.455 740.03 150.03 150.03 154.43 -9.4 0.455 740.03 150.03 150.03 154.43 -9.4 0.455 740.03 150.03 150.03 154.43 -9.4 0.455 740.03 150.03 150.03 154.43 -9.4 0.455 740.03 150.03 150.03 154.43 -6.3 0.455 740.03 150.03 150.03 154.43 -9.4 0.455 740.03 150.03 150.03 154.43 -6.3 0.455 740.03 150.03 150.03 154.43 -9.4 0.455 740.03 150.03 150.03 154.43 -6.3 0.455 740.03 150.03 150.03 154.43 -6.3 0.455 740.03 150.03 150.03 154.43 -6.3 0.455 740.03 150.03 150.03 154.43 -6.3 0.455 740.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03 150.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.                          | 741.58                         | 120.04              | 150.35                | 154.13                | 7.0°             | 0.452                        | 616.75             |  |
| 741.59 118.03 150.36 154.45 -6.3 0.454 740.89 107.69 107.69 150.24 154.45 -6.3 0.454 740.89 107.69 107.69 150.24 154.45 -6.3 0.455 740.73 98.93 150.18 150.18 154.19 -6.3 0.455 740.73 98.93 150.18 150.18 154.42 -6.3 0.455 740.50 107.69 107.69 150.18 154.42 -6.3 0.455 740.50 107.69 107.69 150.18 154.42 -6.3 0.455 740.20 107.60 107.60 107.87 150.19 154.42 -6.3 0.455 740.20 107.60 107.87 150.19 154.42 -6.3 0.455 740.20 107.60 107.60 107.87 150.19 154.42 -6.3 0.455 740.20 107.60 107.80 150.10 154.42 -6.3 0.455 740.20 107.60 107.80 150.10 154.43 -9.4 0.455 740.20 107.60 107.60 107.80 150.10 154.43 -9.4 0.455 740.20 107.60 107.60 107.60 150.10 154.43 -9.4 0.455 740.20 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.60 107.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 233                          | 742.16                         | 126.43              | 150.07                | 153.10                | -6.3             | 0.455                        | 615.73             |  |
| 741.03 113.79 1150.24 154.35 -9.4 0.454 740.79 100.59 150.24 154.35 -6.3 0.4554 740.79 100.59 150.24 154.35 -6.3 0.4554 740.29 100.59 130.18 154.19 -6.3 0.4554 740.20 100.59 130.18 154.19 -6.3 0.4555 740.20 105.32 150.18 154.42 -6.3 0.4555 740.20 105.32 150.18 154.42 -6.3 0.4555 740.20 105.32 150.18 154.42 -6.3 0.4555 740.20 105.32 150.18 154.43 -9.4 0.4555 740.20 105.32 150.19 154.42 -9.4 0.4555 740.20 105.32 150.19 154.42 -9.4 0.4555 740.20 105.30 154.42 -9.4 0.4555 740.20 105.30 154.42 -9.4 0.4555 740.20 150.10 154.42 -9.4 0.4555 740.20 150.10 154.43 -9.4 0.4555 740.20 150.10 154.43 -9.4 0.4555 740.20 150.10 154.43 -9.4 0.4555 740.20 150.10 154.43 -9.4 0.4555 740.20 150.10 154.43 -9.4 0.4555 740.20 150.10 154.43 -9.4 0.4555 740.20 150.10 154.43 -9.4 0.4555 740.20 150.10 154.43 -9.4 0.4555 740.20 150.10 150.10 154.43 -9.4 0.4555 740.20 150.10 150.10 154.43 -9.4 0.4555 740.20 150.10 150.10 154.43 -9.4 0.4555 740.20 150.10 150.10 154.43 -9.4 0.4555 740.20 150.10 150.10 154.20 -9.4 0.4555 740.20 150.10 150.20 154.43 -9.4 0.4555 740.20 150.10 150.20 154.43 -9.4 0.4555 740.20 150.20 150.20 154.43 -9.4 0.4555 740.20 150.20 150.20 154.43 -9.4 0.4555 740.20 150.20 150.20 154.43 -9.4 0.4555 740.20 150.20 150.20 154.43 -9.4 0.4555 740.20 150.20 150.20 154.43 -9.4 0.4555 740.20 150.20 150.20 154.43 -9.4 0.4555 740.20 150.20 150.20 154.43 -9.4 0.4555 740.20 150.20 150.20 154.43 -9.4 0.4555 740.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20 150.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 234                          | 741.59                         | 118.03              | 150.36                | 154.51                |                  | 0.454                        | 623.57             |  |
| 740.789 100.799 150.24 154.66 -6.3 0.455 740.789 100.599 150.18 154.42 -6.3 0.455 740.789 100.789 150.18 150.18 154.42 -6.3 0.455 740.22 101.01 150.18 154.42 -6.3 0.455 740.22 101.01 150.18 154.42 -6.3 0.455 740.22 101.01 150.18 154.42 -6.3 0.455 740.22 101.01 150.18 154.42 -6.3 0.455 740.22 101.01 150.19 154.27 -6.3 0.455 740.22 101.01 150.19 154.27 -6.3 0.455 740.22 101.01 150.19 154.27 -6.3 0.455 740.22 101.01 150.19 154.42 -6.3 0.455 740.22 101.01 150.19 154.42 -6.3 0.455 740.22 101.01 150.19 154.42 -6.3 0.455 740.22 150.10 154.27 -9.4 0.455 740.25 150.10 154.27 -9.4 0.455 740.25 150.10 154.27 -9.4 0.455 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 740.25 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 235                          | 741.03                         | 113.79              | 150.30                | 154.43                | ę.<br>P          | 0.454                        | 62.729             |  |
| 740.29 99.13 150.19 154.35 -6.3 0.455 740.29 98.03 150.18 154.42 -6.3 0.455 740.20 100.83 150.18 154.42 -6.3 0.455 740.20 100.83 150.18 154.42 -6.3 0.455 740.20 100.83 150.18 154.42 -6.3 0.455 740.20 100.83 150.18 154.42 -6.3 0.455 740.20 100.83 150.19 154.27 -6.3 0.455 740.20 100.83 150.19 154.27 -6.3 0.455 740.20 87.09 150.19 154.43 -9.4 0.455 740.20 87.09 150.20 154.43 -9.4 0.455 740.20 87.09 150.30 154.42 -9.4 0.455 740.20 87.00 150.30 154.42 -9.4 0.455 740.20 87.00 150.30 154.43 -9.4 0.455 740.20 87.00 150.30 154.43 -9.4 0.455 740.20 87.00 150.30 154.43 -9.4 0.455 740.20 87.00 150.30 154.43 -9.4 0.455 740.20 87.00 150.30 154.43 -9.4 0.455 740.20 87.00 150.30 154.43 -9.4 0.455 740.20 87.00 150.20 154.43 -9.4 0.455 740.20 87.00 150.20 154.43 -9.4 0.455 740.20 87.00 150.20 154.43 -9.4 0.455 740.20 87.00 150.20 154.43 -9.4 0.455 740.20 87.00 150.20 154.43 -9.4 0.455 740.20 87.00 150.20 154.43 -9.4 0.455 740.20 87.00 150.20 154.43 -9.4 0.455 740.20 87.00 150.20 154.43 -9.4 0.455 740.20 87.00 150.20 154.43 -9.4 0.455 740.20 87.00 150.20 154.43 -9.4 0.455 740.20 87.00 150.20 154.43 -9.4 0.455 740.20 87.00 150.20 154.43 -9.4 0.455 740.20 87.00 150.20 154.43 -9.4 0.455 740.20 150.20 154.20 154.20 -9.4 0.455 740.20 150.20 154.20 154.20 -9.4 0.455 740.20 150.20 150.20 154.20 -9.4 0.455 740.20 150.20 150.20 154.20 -9.4 0.455 740.20 150.20 154.20 -9.4 0.455 740.20 150.20 150.20 154.20 -9.4 0.455 740.20 150.20 150.20 154.20 -9.4 0.455 740.20 150.20 150.20 154.20 -9.4 0.455 740.20 150.20 150.20 154.20 -9.4 0.455 740.20 150.20 150.20 154.20 -9.4 0.455 740.20 150.20 150.20 154.20 -9.4 0.455 740.20 150.20 154.20 154.20 -9.4 0.455 740.20 150.20 154.20 154.20 -9.4 0.455 740.20 150.20 154.20 154.20 -9.4 0.455 740.20 150.20 154.20 154.20 -9.4 0.455 740.20 150.20 154.20 154.20 -9.4 0.20 150.20 154.20 150.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 154.20 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 737<br>737                   | 740.89                         | 100.59              | 150.24                | 154.66                | 1.09             | 0.454                        | 640.19             |  |
| 740,73 98.93 156,18 154,19 -6.3 0,455 740,36 98.93 156,18 154,42 -6.3 0,454 740,36 10.87 150,18 154,44 -6.3 0,455 740,06 100.87 150,18 154,43 -6.3 0,455 740,06 100.87 150,18 154,43 -6.3 0,455 740,06 100.87 150,19 154,43 -6.3 0,455 740,29 88.04 150,19 154,43 -6.3 0,455 739,29 88.04 150,10 154,43 -6.3 0,455 739,28 88.04 150,10 154,43 -6.3 0,455 739,56 88.05 150,00 154,43 -6.3 0,455 739,56 88.05 150,00 154,43 -6.3 0,455 739,10 154,27 -9.4 0,455 739,10 150,10 154,43 -6.3 0,455 739,10 150,10 154,43 -6.3 0,455 739,10 150,10 154,43 -6.3 0,455 739,10 150,10 154,43 -6.3 0,455 739,10 150,10 154,43 -6.3 0,455 739,10 150,10 154,43 -6.3 0,455 738,10 150,10 154,43 -6.3 0,455 738,10 150,10 154,43 -6.3 0,455 738,10 150,10 154,43 -6.3 0,455 738,10 150,10 154,13 -6.3 0,455 738,10 150,10 154,13 -6.3 0,455 738,10 150,10 154,13 -6.3 0,455 738,10 150,10 154,13 -6.3 0,455 738,10 150,10 150,10 154,13 -6.3 0,455 738,10 150,10 150,10 154,13 -6.3 0,455 738,14 168,14 150,17 154,17 -6.3 0,455 738,14 168,14 150,17 154,17 -6.3 0,455 738,14 168,14 150,17 154,13 -6.3 0,455 738,14 168,14 150,17 154,13 -6.3 0,455 738,14 168,14 150,17 154,13 -6.3 0,455 738,14 168,14 150,17 154,13 -6.3 0,455 738,14 168,14 150,17 154,13 -6.3 0,455 738,14 168,14 150,17 154,13 -6.3 0,455 738,14 168,14 150,17 154,13 -6.3 0,455 738,14 168,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,17 154,13 -6.3 0,455 738,14 150,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 238                          | 740.29                         | 99.13               | 150.19                | 154.35                | 6.3              | 0.455                        | 641.16             |  |
| 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 740.20 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 533                          | 740.73                         | 98.93               | 150.18                | 154.19                | -6.3             | 0.455                        | 641.80             |  |
| 740.30 740.30 740.30 740.30 740.30 740.30 740.30 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 740.26 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 240                          | 740.36                         | 101.03              | 150.18                | 154.44                | 9.00             | 0.455                        | 639.22             |  |
| 740.06 100.87 150.19 154.27 -6.3 0.455 740.26 87.89 150.01 154.27 -6.3 0.455 740.26 87.89 150.01 154.82 -9.4 0.455 739.88 83.31 150.30 154.43 -9.4 0.455 739.88 83.72 150.30 154.43 -9.4 0.455 739.88 83.72 150.30 154.43 -9.4 0.455 739.56 82.69 150.30 154.43 -9.4 0.455 739.56 82.69 150.30 154.43 -9.4 0.455 739.57 83.03 150.30 154.43 -9.4 0.455 739.57 83.03 150.30 154.43 -9.4 0.455 739.51 738.73 69.01 150.19 154.51 -9.4 0.455 738.73 69.01 150.19 154.43 -9.4 0.455 738.73 69.01 150.19 154.43 -9.4 0.455 738.58 69.01 150.19 154.43 -9.4 0.455 738.58 69.01 150.07 154.58 -9.4 0.455 738.58 69.01 150.07 154.58 -9.4 0.455 738.58 69.01 150.07 154.58 -9.4 0.455 738.58 69.01 150.07 154.50 -6.3 738.58 69.69 149.57 154.58 -9.4 0.455 738.58 69.69 149.77 154.50 -6.3 738.58 69.63 149.77 154.11 -9.4 738.58 69.01 150.13 154.43 -9.4 9.4 738.58 68.50 150.13 154.43 -9.4 9.4 738.58 69.01 150.13 154.43 -9.4 9.4 738.58 69.01 150.13 154.43 -9.4 9.4 738.59 69.01 150.13 154.43 -9.4 9.4 738.59 69.01 150.13 154.43 -9.4 9.4 738.59 69.01 150.13 154.43 -9.4 9.4 738.59 69.01 150.13 154.43 -9.4 9.4 9.5 9.4 150.13 154.43 -9.4 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 242                          | 740.30                         | 105.32              | 150.18                | 154.43                | 4.0              | 0.455                        | 634.98             |  |
| 746.29 87.89 150.01 154.82 -9.4 0.454 159.25 88.25 88.21 150.30 154.42 -9.4 0.455 159.30 154.42 -9.4 0.455 159.30 154.42 -9.4 0.455 159.30 154.42 -9.4 0.455 159.30 154.42 -9.4 0.455 159.30 154.42 -9.4 0.455 159.30 154.43 -9.4 0.455 159.30 154.27 -9.4 0.455 159.31 150.30 154.27 -9.4 0.455 159.31 150.30 154.27 -9.4 0.455 159.31 150.31 154.27 -9.4 0.455 159.31 1738.78 159.31 150.31 154.35 -9.4 0.455 159.31 1738.78 159.04 150.30 154.43 -9.4 0.455 159.30 154.43 -9.4 0.455 159.30 154.43 -9.4 0.455 159.30 154.43 -9.4 0.455 159.30 154.43 -9.4 0.455 159.30 159.30 154.43 -6.3 0.455 159.30 159.30 154.43 -6.3 0.455 159.30 159.30 154.43 -6.3 0.455 159.30 159.30 154.43 -6.3 0.455 159.30 159.30 154.43 -6.3 0.455 159.30 159.30 154.43 -6.3 0.455 159.30 159.30 154.43 -6.3 0.455 159.30 159.30 154.43 -6.3 0.455 159.30 159.30 154.58 -9.4 0.455 159.30 159.30 154.58 -9.4 0.455 159.30 159.30 154.58 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 154.30 -9.4 0.455 159.30 159.30 154.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 154.30 -9.4 0.455 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 159.30 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 243<br>244                   | 740.06                         | 100.87              | 150.19                | 154.27                | 7.00             | 0.455                        | 645.36             |  |
| 738.299 85.04 150.30 154.43 -9.4 0.455 739.25 83.31 150.19 154.42 -9.6 0.455 739.25 83.31 150.19 154.42 -9.6 0.455 739.25 83.32 150.30 154.27 -9.4 0.455 739.25 83.03 150.07 154.27 -9.4 0.455 739.25 83.03 150.07 154.27 -9.4 0.455 739.21 74.49 150.01 154.27 -9.4 0.455 739.21 74.49 150.01 154.27 -9.4 0.455 738.78 75 69.01 150.18 154.43 -9.4 0.454 738.78 69.01 150.18 154.43 -9.4 0.454 738.78 70.19 140.83 155.01 154.43 -9.4 0.455 739.04 69.22 150.24 154.43 -9.4 0.455 738.58 69.44 150.07 154.43 -9.4 0.455 738.58 69.44 150.07 154.43 -9.4 0.455 738.58 69.08 149.83 154.43 -9.4 0.455 738.45 69.08 149.95 154.58 -9.4 0.455 738.45 69.08 149.95 154.58 -9.4 0.455 738.45 69.08 149.95 154.58 -9.4 0.455 738.45 69.08 149.95 154.58 -9.4 738.45 69.08 149.95 154.58 -9.4 738.45 66.86 150.07 154.27 -6.3 738.45 66.86 150.13 154.11 -9.4 738.45 66.86 150.13 154.43 -9.4 738.45 66.86 150.13 154.43 -9.4 738.45 66.86 150.13 154.43 -9.4 738.45 66.86 150.13 154.43 -9.4 738.45 66.86 150.13 154.43 -9.4 6.9 738.45 66.86 150.13 154.43 -9.4 6.9 738.45 66.86 150.13 154.43 -9.4 6.9 738.45 66.86 150.13 154.43 -9.4 6.9 738.45 66.86 150.13 154.43 -9.4 6.9 738.45 66.86 150.13 154.43 -9.4 6.9 738.45 66.86 150.13 154.43 -9.4 6.9 738.45 66.86 150.13 154.43 -9.4 6.9 738.45 66.86 150.13 154.43 -9.4 6.9 738.45 66.86 150.13 154.43 -9.4 6.9 738.45 66.86 150.13 154.43 -9.6 738 738.45 66.86 150.13 154.43 -9.4 6.9 738.45 66.86 150.13 154.43 -9.6 738 738.45 66.86 150.13 154.43 -9.6 738 738.45 66.86 150.13 154.43 -9.6 738 738.45 66.86 150.13 154.43 -9.6 738 738 738 738 738 738 738 738 738 738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 245                          | 740.29                         | 87.89               | 150.01                | 154.82                | 4.00             | 0.454                        | 652.40             |  |
| 739.88 739.88 739.88 739.88 739.88 739.88 739.88 739.67 739.67 739.67 739.67 739.67 739.67 739.67 739.67 739.67 739.67 739.67 738.78 738.78 738.78 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 246                          | 739.99                         | 85.04<br>84.21      | 150.30                | 154.43                | 4.6              | 0.45<br>0.45<br>0.45<br>0.45 | 654.95<br>655.03   |  |
| 739.56 83.72 150.30 154.27 -9.4 0.455 739.25 82.69 150.07 154.43 -6.3 0.455 739.27 82.69 150.07 154.43 -6.3 0.455 739.21 80.25 150.01 154.21 -9.4 0.455 739.21 80.25 150.01 154.51 -9.4 0.455 739.21 80.25 150.01 154.51 -9.4 0.454 738.78 73 69.01 150.01 154.43 -9.4 0.454 738.96 70.05 149.83 153.88 -6.3 0.455 738.63 69.14 149.83 153.88 -6.3 0.455 738.63 69.01 150.07 154.58 -9.4 0.455 738.63 69.01 150.07 154.58 -9.4 0.455 738.83 69.01 150.07 154.58 -9.4 738.83 69.03 149.83 154.58 -9.4 738.83 69.03 149.83 154.58 -9.4 738.83 69.03 150.13 154.11 -9.4 738.84 68.80 150.13 154.11 -9.4 738.84 68.80 150.13 154.11 -9.4 738.85 68.94 150.13 154.11 -9.4 738.85 69.01 150.13 154.11 -9.4 738.85 69.01 150.13 154.11 -9.4 738.85 68.94 150.13 154.11 -9.4 738.85 68.94 150.13 154.11 -9.4 738.85 69.01 150.13 154.11 -9.4 738.85 69.01 150.13 154.11 -9.4 738.85 69.01 150.13 154.50 -9.4 738.85 69.01 150.13 154.50 -9.4 738.85 69.01 150.13 154.50 -9.4 738.85 69.01 150.13 154.50 -9.4 738.85 69.01 150.13 154.50 -9.4 738.85 69.01 150.13 154.50 -9.4 738.85 69.01 150.13 154.50 -9.4 738.85 69.01 150.13 154.50 -9.4 738.85 69.01 150.01 154.50 -9.4 66.3 -9.4 738.85 69.01 150.01 154.50 -9.4 66.3 -9.4 738.85 69.01 150.01 154.50 -9.4 66.3 -9.4 738.85 69.01 150.01 154.50 -9.4 66.3 -9.4 738.85 69.01 150.01 154.50 -9.4 66.3 -9.4 738.85 69.01 150.01 154.50 -9.4 66.3 -9.4 738.85 69.01 150.01 154.50 -9.4 66.3 -9.4 738.85 69.01 150.01 154.50 -9.4 66.3 -9.4 738.85 69.01 150.01 154.50 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3 -9.4 66.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 84<br>84<br>84<br>84<br>84 | 739.88                         | 83.31               | 150.30                | 154.43                | 4.6-             | 0.455                        | 656.57             |  |
| 739.25 739.27 739.27 739.67 739.67 739.67 739.67 739.67 739.11 74.49 738.78 738.78 738.78 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89 738.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 249                          | 739.56                         | 83.72               | 150.30                | 154.27                | 4.0-             | 0.455                        | 655.84             |  |
| 739.21 80.25 150.01 154.51 -9.4 0.455 739.21 74.49 150.07 154.35 -9.4 0.454 738.78 73 79.21 74.49 150.07 154.35 -9.4 0.454 738.78 73 69.01 150.19 154.58 -9.4 0.454 738.73 69.01 150.19 154.43 -9.4 0.455 738.96 70.05 149.83 154.43 -9.4 0.455 738.69 69.22 150.01 154.58 -9.4 0.455 738.69 69.02 150.07 154.43 -6.3 0.455 738.86 69.01 150.07 154.43 -6.3 738.87 69.63 149.83 154.58 -9.4 738.87 69.63 149.83 154.58 -9.4 738.88 69.03 150.24 154.58 -9.4 738.89 69.35 150.13 154.11 -9.4 738.89 69.35 150.13 154.11 -9.4 738.80 68.94 150.13 154.11 -9.4 738.80 68.94 150.13 154.11 -9.4 738.80 68.94 150.13 154.11 -9.4 738.80 68.94 150.13 154.11 -9.4 738.80 68.94 150.13 154.11 -9.4 738.80 68.94 150.13 154.11 -9.4 738.80 68.94 150.13 154.11 -9.4 738.80 68.94 150.13 154.13 -9.4 738.80 68.94 150.13 154.35 -9.4 738.80 68.94 150.13 154.50 -9.4 738.80 68.94 150.13 154.50 -9.4 738.80 68.94 150.13 154.50 -9.4 738.80 68.94 150.13 154.50 -9.4 738.80 68.94 150.10 150.13 154.50 -9.4 738.80 68.94 150.10 150.10 154.50 -9.4 738.80 68.94 150.10 150.10 154.50 -9.4 738.80 68.94 150.10 150.10 154.50 -9.4 738.80 68.94 150.10 150.10 154.50 -9.4 738.80 68.94 150.10 150.10 154.50 -9.4 738.80 69.90 150.10 150.10 154.50 -9.4 738.80 69.90 150.10 150.10 154.50 -9.4 738.80 69.90 150.10 150.10 154.50 -9.4 738.80 69.90 150.10 150.10 154.50 -9.4 738.80 69.90 150.10 150.10 154.50 -9.4 738.80 69.90 150.10 150.10 154.50 -9.4 738.80 69.90 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.10 150.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35                           | 739.67                         | 82.69<br>83.03      | 150.07                | 154.43                | . 4.             | 0.455                        | 656.64             |  |
| 739.11 74.49 150.07 154.35 -9.4 0.454 738.78 71.65 150.30 154.43 -9.4 0.454 738.78 69.01 150.18 154.58 -9.4 0.454 738.78 69.01 150.18 154.58 -9.4 0.454 738.96 70.05 149.95 154.43 -6.3 0.455 738.48 70.05 149.83 153.88 -6.3 738.58 68.94 150.07 154.58 -9.4 738.58 69.01 150.07 154.59 -9.4 738.87 69.63 149.83 154.59 -6.3 738.87 69.63 149.83 154.59 -6.3 738.88 69.08 149.95 154.59 -6.3 738.89 69.35 150.13 154.11 -9.4 738.80 68.94 150.13 154.11 -9.4 738.80 68.94 150.13 154.11 -9.4 738.81 68.86 150.13 154.11 -9.4 738.82 68.94 150.13 154.35 -9.4 738.82 68.94 150.13 154.35 -9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 252                          | 739.21                         | 80.25               | 150.01                | 154.51                | 4.0-             | 0.455                        | 658.96             |  |
| 738.75 738.76 69.84 738.75 738.76 69.84 738.76 69.84 738.96 70.19 150.11 154.19 738.48 70.19 149.95 154.43 -9.4 0.455 738.68 69.22 150.01 154.43 -6.3 0.455 738.68 69.22 150.07 154.58 -9.4 0.455 738.63 69.14 149.83 154.58 -9.4 738.87 69.63 149.95 154.50 -6.3 738.88 69.35 150.07 154.11 -9.4 738.89 68.80 150.13 154.11 -9.4 738.80 68.90 150.13 154.11 -9.4 738.85 68.90 150.13 154.11 -9.4 738.85 68.90 150.13 154.11 -9.4 738.85 68.90 150.13 154.35 -9.4 738.25 68.90 150.10 154.50 -9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 253                          | 739.11                         | 74.49               | 150.07                | 154.35                | 4.0              | 0.454                        | 667.13             |  |
| 738.73 69.01 150.18 154.58 -9.4 0.454 738.96 70.05 149.95 154.42 -9.4 0.455 738.96 70.19 149.83 153.88 -6.3 0.455 738.58 69.22 150.24 154.43 -6.3 738.58 69.914 149.83 154.58 -9.4 738.59 69.10 150.07 154.51 -9.4 738.30 69.70 150.24 154.50 -6.3 738.87 69.63 149.83 154.50 -6.3 738.87 69.63 149.83 154.50 -6.3 738.88 69.35 150.07 154.11 -9.4 738.14 68.80 150.13 154.11 -9.4 738.45 69.01 150.13 154.11 -9.4 738.45 68.86 150.13 154.35 -9.4 738.45 68.86 150.13 154.31 -9.4 738.25 68.86 150.10 154.35 -9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 255                          | 738.76                         | 69.84               | 150.19                | 154.19                | 4.6-             | 0.454                        | 668.92             |  |
| 738.94 70.05 149.83 153.88 -6.3 0.455 738.89 70.19 149.83 153.88 -6.3 0.455 738.89 70.19 149.83 153.88 -6.3 0.455 738.59 69.22 150.24 154.58 -6.3 0.455 738.59 69.01 150.07 154.58 -9.4 738.45 69.63 149.83 154.50 -6.3 738.87 69.63 149.83 154.50 -9.4 738.38 69.35 150.07 154.11 -9.4 738.14 68.80 150.13 154.11 -9.4 738.45 69.01 150.13 154.43 -9.4 738.45 69.01 150.13 154.43 -9.4 738.45 68.86 150.13 154.35 -6.3 738.45 69.01 150.13 154.43 -9.4 738.25 68.86 150.10 154.35 -9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 256                          | 738.73                         | 69.01               | 150.18                | 154.58                | 4.0-             | 0.454                        | 669.73             |  |
| 738.48 70.19 149.83 153.88 -6.3 738.69 69.22 150.24 154.43 -6.3 738.58 68.94 150.07 154.58 -9.4 738.58 69.01 150.07 154.58 -9.4 738.45 69.01 150.07 154.43 -6.3 738.45 69.63 149.83 154.56 -9.4 738.87 69.63 149.83 154.50 -9.4 738.38 69.35 149.77 154.27 -6.3 738.38 69.35 150.07 154.11 -9.4 738.45 69.01 150.13 154.43 -9.4 738.45 69.01 150.13 154.43 -9.4 738.45 69.01 150.13 154.43 -9.4 738.25 68.86 150.07 154.50 -9.4 738.25 68.86 150.07 154.50 -9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.0                         | 738.96                         | 70.05               | 149.95                | 154.43                | -6.3             | 0.455                        | 668.90             |  |
| 738.69 69.22 150.24 154.43 -6.3<br>738.58 68.94 150.07 154.58 -9.4<br>738.63 69.01 150.07 154.43 -6.3<br>738.30 69.01 150.07 154.43 -9.4<br>738.45 69.08 150.24 154.58 -9.4<br>738.87 69.08 149.95 154.58 -9.4<br>738.53 68.52 149.77 154.27 -6.3<br>738.38 69.35 150.07 154.11 -9.4<br>738.14 68.80 150.13 154.11 -9.4<br>738.45 69.01 150.13 154.43 -9.4<br>738.25 68.86 150.07 154.35 -6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 259                          | 738.48                         | 70.19               | 149.83                | 153.88                | -6.3             |                              | 668.30             |  |
| 738.63 69.14 149.83 154.12 -6.3 159.00 69.01 150.07 154.12 -6.3 159.00 69.70 150.07 154.50 -9.4 150.07 154.50 -9.4 150.07 154.50 -9.4 150.07 154.50 -9.4 150.08 149.83 154.50 -9.4 150.08 149.77 154.11 -9.4 150.13 154.11 -9.4 150.13 154.11 -9.4 150.13 154.11 -9.4 150.13 154.11 -9.4 150.13 154.50 -9.4 150.13 154.50 -9.4 150.13 154.50 -9.4 150.18 154.50 -9.4 150.18 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 154.50 -9.4 150.19 150.19 150.19 150.19 150.19 150.19 150.19 154.50 -9.4 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.19 150.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 260                          | 738.69                         | 69.22               | 150.24                | 154.43                | . o              |                              | 669.47             |  |
| 739.00 69.01 150.07 154.43 -9.4 738.30 69.70 150.42 154.50 -6.3 738.87 69.63 149.83 154.50 -6.3 738.53 69.08 149.95 154.58 -9.4 738.53 68.52 149.77 154.51 -9.4 738.80 68.94 150.13 154.11 -9.4 738.45 69.01 150.13 154.11 -9.4 738.25 68.86 150.07 154.35 -9.4 738.25 68.86 150.07 154.50 -9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 262                          | 738.63                         | 69.14               | 149.83                | 154.12                | 6.3              |                              | 669.49             |  |
| 738.30 69.40 150.24 154.50 -9.5 738.87 69.63 149.83 154.58 -9.4 738.53 69.08 149.95 154.58 -9.4 738.53 69.35 149.77 154.11 -9.4 738.80 68.94 150.13 154.11 -9.4 738.45 69.01 150.13 154.43 -9.4 738.25 68.86 150.07 154.66 -9.4 738.25 68.86 150.07 154.50 -9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 263                          | 739.00                         | 69.01               | 150.07                | 154.43                | 4.6-             |                              | 669.99             |  |
| 738.87 69.63 149.83 154.50 -6.3<br>739.08 69.08 149.95 154.58 -9.4<br>738.53 68.52 149.77 154.27 -6.3<br>738.14 68.80 150.13 154.11 -9.4<br>738.45 69.01 150.13 154.43 -9.4<br>738.25 68.86 150.01 154.66 -9.4<br>738.25 68.86 150.01 154.50 -9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 265<br>265                   | 738.45                         | 69.49               | 150.24                | 154.58                | -0-              |                              | 668.96             |  |
| 738.28 69.08 149.95 154.58 -9.4 738.53 69.35 150.07 154.11 -9.4 738.14 68.80 150.13 154.11 -9.4 738.45 69.01 150.18 154.66 -9.4 738.25 68.86 150.07 154.50 -9.4 738.25 68.86 150.07 154.50 -9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 266                          | 738.87                         | 69.63               | 149.83                | 154.50                | -6.3             |                              | 669.24             |  |
| 738.38 69.35 150.07 154.11 -9.4<br>738.14 68.80 150.13 154.11 -9.4<br>738.80 68.94 150.13 154.43 -9.4<br>738.45 69.01 150.18 154.66 -9.4<br>738.25 68.86 150.19 154.35 -6.3<br>738.27 68.52 150.07 154.50 -9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 768<br>268                   | 738.53                         | 68.52               | 149.77                | 154.27                | 4.6              |                              | 670.00             |  |
| 738.14 68.80 150.13 154.11 -9.4<br>738.80 68.94 150.13 154.43 -9.4<br>738.45 69.01 150.18 154.66 -9.4<br>738.25 68.86 150.19 154.35 -6.3<br>748.37 68.52 150.07 154.50 -9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269                          | 738.38                         | 69.35               | 150.07                | 154.11                | 4.6              |                              | 669.03             |  |
| 738.25 68.86 150.19 154.66 -9.4<br>738.25 68.86 150.19 154.35 -6.3<br>738.37 68.52 150.07 154.50 -9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 270<br>271                   | 738.14                         | 68.80<br>68.94      | 150.13                | 154.11                | 4.00             |                              | 669.86             |  |
| 738.25 68.86 150.19 154.35 -5.3<br>738.37 68.52 150.07 154.50 -9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 272                          | 738.45                         | 69.01               | 150.18                | 154.66                | 4.0              |                              | 669.44             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 273<br>274                   | 738.25                         | 68.86<br>58.50      | 150.19                | 154.50                | 0.00             |                              | 669.85             |  |

Single Brush - position 1 œ CONFIGURATION NO.

|               | DELTA-P<br>STA 1-5           | (DS1D)  | 66668888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------|------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | AVERAGE<br>LEAKAGE<br>DATE   | (LBM/S) | 0.000.000.000.000.000.000.000.000.000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | AVERAGE<br>SHAFT             | (RPM)   | ݥݟݟݥݟݥݥݥݥݥݥݥݥݥݥݥݥݥݥݥݥݥݥݥݥݥݥݥݥݥݥݥݥݥݥݥݥ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | AVG TEMP<br>STATION 5        | (R)     | 154.25<br>154.25<br>154.25<br>154.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>155.25<br>15 |
| - position -  | AVG TEMP<br>STATION 1        | (R)     | 149.95<br>149.89<br>150.07<br>150.07<br>150.09<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>150.03<br>15 |
| single Brush  | AVG PRESS<br>STATION 5       | (PSIA)  | 69.09.09.09.09.09.09.09.09.09.09.09.09.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | EN<br>AVG PRESS<br>STATION 1 | (PSIA)  | 737.734<br>738.737<br>738.738<br>738.745<br>738.745<br>738.745<br>737.88.00<br>737.88.00<br>737.88.00<br>737.88.00<br>755.65<br>755.65<br>755.65<br>777.73.38<br>777.73.46<br>777.73.46<br>777.73.46<br>777.73.46<br>777.73.46<br>777.73.46<br>777.73.46<br>777.73.46<br>777.73.46<br>777.73.46<br>777.73.46<br>777.73.46<br>777.73.46<br>777.73.46<br>777.73.46<br>777.73.46<br>777.73.46<br>777.73.46<br>777.73.46<br>777.73.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CONFIGURALION | FLUID: NITROGEN<br>RDG SCAN  |         | 740 227 247 248 248 248 248 248 248 248 248 248 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

DELTA-P STA 1-2 77.88 101.27 101.27 101.27 101.27 101.27 101.27 101.27 102.131 102.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 103.131 (PSID) DELTA-P STA 1-5 77.15 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.115 1000.1 (PSID) 2 VENTURI 2 LEAKAGE RATE (LBM/S) 0.0068 0.0026 0.0026 0.0026 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0. 0.131 0.150 0.163 0.169 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 6556999 655699 655699 655699 655699 655699 655699 655699 655699 6556999 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 6556999 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 6556999 655699 655699 655699 655699 655699 655699 655699 655699 6556999 655699 655699 655699 655699 655699 655699 655699 655699 6556999 655699 655699 655699 655699 655699 655699 655699 655699 6556999 655699 655699 655699 655699 655699 655699 655699 655699 6556999 655699 655699 655699 655699 655699 655699 655699 655699 6556999 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 655699 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65569 65669 65669 65669 65669 65669 65669 65669 65669 65669 65669 6566 AVERAGE SHAFT SPEED (RPM) ιC AVG TEMP STATION 5  $\mathfrak{E}$ 2 AVG TEMP STATION 2 (R) AVG TEMP STATION 1 48.55 47.74 44.77.74 44.77.79 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 46.57 3 AVG PRESS STATION 5 353.51 353.51 353.51 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 331.55 33 AVG PRESS STATION 2 3362.78 2259.72 2255.33 3362.78 3386.33 3386.78 3386.00 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 3386.33 AVG PRESS STATION 1 440.66
421.66
423.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4213.80
4 YDROGEN SCANS P NO SOCIO CON CONTRA DE CON FLUID: HYE RDG AVG 

FLUID: HYDROGEN

| DELTA-P<br>STA 1-2                 | (PSID)  | 29.10<br>25.64<br>127.86<br>150.11<br>127.65<br>150.12<br>127.12<br>127.12<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.13<br>127.                                                                                                                                                |
|------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DELTA-P<br>STA 1-5                 | (PSID)  | 28.60<br>125.10<br>123.33<br>126.007<br>127.003<br>123.003<br>123.003<br>123.003<br>124.00<br>124.00<br>124.00<br>125.003<br>125.003<br>126.003<br>126.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.003<br>127.0                                                                                                                                                                                                                                                            |
| VENTURI 2<br>LEAKAGE<br>RATE       | (LBM/S) | 0.077<br>0.077<br>0.120<br>0.152<br>0.152<br>0.161<br>0.148<br>0.128<br>0.089<br>0.094<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093<br>0.093 |
| AVERAGE<br>SHAFT<br>SPEED          | (RPM)   | 45293.8<br>35348.8<br>35340.6<br>35302.5<br>35302.5<br>35302.5<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.6<br>35302.                                                                                                                                                                                                                                                               |
| AVG TEMP<br>STATION 5              | (R)     | 85558888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AVG TEMP<br>STATION 2              | (R)     | 52.33<br>52.33<br>52.33<br>52.33<br>52.33<br>52.33<br>52.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33<br>53.33 |
| AVG TEMP<br>STATION 1              | (R)     | \$4 699.59   \$4 699.59   \$5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AVG PRESS<br>STATION 5             | (PSIA)  | 426.011<br>369.11<br>369.11<br>386.35<br>386.35<br>386.35<br>386.35<br>386.95<br>390.20<br>467.36<br>467.36<br>467.36<br>467.36<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>391.20<br>3                                                                                                                                                |
| AVG PRESS<br>STATION 2             | (PSIA)  | 425.52<br>425.52<br>425.52<br>425.52<br>425.52<br>425.52<br>425.52<br>425.52<br>425.52<br>425.52<br>425.52<br>425.52<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53<br>425.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N<br>AVG PRESS<br>STATION 1        | (PSIA)  | 440.36<br>451.11<br>442.42<br>432.42<br>432.62<br>432.62<br>443.23<br>442.53<br>445.23<br>445.73<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85<br>466.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FLUID: HYDROGEN<br>RDG AVG SCANS A |         | 859 ALL SCNS 861 ALL SCNS 862 ALL SCNS 863 ALL SCNS 864 ALL SCNS 865 ALL SCNS 866 ALL SCNS 866 ALL SCNS 866 ALL SCNS 872 ALL SCNS 873 ALL SCNS 873 ALL SCNS 874 ALL SCNS 882 ALL SCNS 884 ALL SCNS 885 ALL SCNS 886 ALL SCNS 899 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

### References

- Ferguson, J.G.: Brushes as High Performance Gas Turbine Seals. ASME Paper 88–GT–182, 1988.
- 2. Flower, R.: Brush Seal Development System. AIAA Paper 90-2143, 1990.
- Gorelov, G.M.; Reznik, V.E.; and Tsibizov, V.I.: An Experimental Study
  of the Rate Characteristics of Brush Seals in Comparison With Labyrinth
  Seals. Aviatsionnaia Tekhnika, no. 4, 1988, pp. 43–46, (in Russian).
- Conner, K.J.; and Childs, D.W.: Rotordynamic Coefficient Test Results for a Four-Stage Brush Seal. J. Propul. P., vol. 9, no. 3, May-June 1993, pp. 462–465.
- Chupp, R.E.; and Nelson, P.: Evaluation of Brush Seals for Limited-Life Engines. AIAA Paper 90–2140, 1990.
- Chupp, R.E.; and Dowler, C.A.: Performance Characteristics of Brush Seals for Limited-Life Engines. ASME Paper 91-GT-281, 1991.
- Holle, G.F.; and Krishnan, M.R.: Gas Turbine Engine Brush Seal Applications. AIAA Paper 90–2142, 1990.
- Hendricks, R.C., et al.: Some Preliminary Results of Brush Seal/Rotor Interference Effects on Leakage at Zero and Low RPM Using a Tapered-Plug Rotor. AIAA-91-3390 (NASA TM-104396), 1991.
- Schlumberger, J.A.; Proctor, M.P.; and Hendricks, R.C.: Eccentricity Effects on Leakage of a Brush Seal at Low Speeds. NASA TM-105141, 1991.
- Carlile, J.A., et al.: Preliminary Experimental Results for a Cryogenic Brush Seal Configuration. AIAA Paper 93–2535, 1993.
- Hendricks, R.C., et al.: Development of Advanced Seals for Space Propulsion Turbomachinery. NASA TM-105659, 1992.
- Rocketdyne: Small Centrifugal Pumps for Low Thrust Rocket Engines, Final Report. RI/RD 87-164, March 1987.
- Masters, A.I.; and Mitchell, J.C.: Advanced Expander Test Bed Program Preliminary Design Review Report. NASA CR-187081, 1991.

- John, J.E.A.; and Haberman, W.L.: Introduction to Fluid Mechanics. 2nd ed., Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1980, pp. 487-489.
- Fessler, T.E.: FLUID: A Numerical Interpolation Procedure for Obtaining Thermodynamic and Transport Properties of Fluids. NASA TM X-3572, 1977.
- Morrison, G.L., et al.: Labyrinth Seals for Incompressible Flow, Final Report. NASA CR-170938, 1983.
- Chupp, R.E.; Holle, G.F.; and Dowler, C.A.: Simple Leakage Flow Model for Brush Seals. AIAA Paper 91–1913, 1991.
- Hendricks, R.C., et al.: A Bulk Flow Model of a Brush Seal System. ASME Paper 91–GT–325, 1991.
- Carlile, J.A.; Hendricks, R.C.; and Yoder, D.A.: Brush Seal Leakage Performance With Gaseous Working Fluids at Static and Low Rotor Speed Conditions. ASME Paper 92-GT-304 (NASA TM-105400), 1992.
- Hendricks, R.C.; Flower, R.; and Howe, H.: Development of a Brush Seals Program Leading to Ceramic Brush Seals. Presented at Seals Flow Code Development 1993, NASA CP-10136, 1994.
- Kudriavtsev, V.V.; and Braun, M.J.: Advances in Brush Seal Numerical Modeling. Presented at the 1994 SAE Aerospace Atlantic Conference and Exposition, SAE Paper 941208, 1994.
- Basu, P., et al.: Hysteresis and Bristle Stiffening Effects of Conventional Brush Seals. AIAA Paper 93–1996, 1993.
- Davidian, K.J.; Dieck, R.H.; and Chuang, I.: A Detailed Description of the Uncertainty Analysis for High Area Ratio Rocket Nozzle Tests at the NASA Lewis Research Center. NASA TM-100203, 1987.
- Hendricks, R.C.; Baron, A.K.; and Peller, I.C.: GASP—A Computer Code for Calculating the Thermodynamic and Transport Properties for Ten Fluids: Parahydrogen, Helium, Neon, Methane, Nitrogen, Carbon Monoxide, Oxygen, Fluorine, Argon, and Carbon Dioxide, NASATN D-7808, 1975.

## REPORT DOCUMENTATION PAGE

Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

| 1. / | AGENCY USE ONLY (Leave blank)                                                         | 2. REPORT DATE                   | 3. REPORT TYPE AND DATES COVERED               |  |  |  |  |
|------|---------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------|--|--|--|--|
|      |                                                                                       | October 1996                     | Technical Paper                                |  |  |  |  |
| 4.   | TITLE AND SUBTITLE                                                                    |                                  | 5. FUNDING NUMBERS                             |  |  |  |  |
|      | Brush Seals for Cryogenic Appli<br>Performance, Stage Effects, and Prelimin           |                                  |                                                |  |  |  |  |
| 6. / | AUTHOR(S)                                                                             |                                  | WU-384-04-11                                   |  |  |  |  |
|      | Margaret P. Proctor, James F. Wa<br>and G. Scott Williamson                           | alker, H. Douglas Perkins, Joan  | n F. Hoopes,                                   |  |  |  |  |
| 7. 1 | PERFORMING ORGANIZATION NAME(                                                         | S) AND ADDRESS(ES)               | 8. PERFORMING ORGANIZATION REPORT NUMBER       |  |  |  |  |
|      | National Aeronautics and Space<br>Lewis Research Center<br>Cleveland, Ohio 44135-3191 | Administration                   | E-9474                                         |  |  |  |  |
| 9.   | SPONSORING/MONITORING AGENCY                                                          | NAME(S) AND ADDRESS(ES)          | 10. SPONSORING/MONITORING AGENCY REPORT NUMBER |  |  |  |  |
|      | National Aeronautics and Space<br>Washington, DC 20546-0001                           | Administration                   | NASA TP-3536                                   |  |  |  |  |
| 11.  | SUPPLEMENTARY NOTES                                                                   |                                  |                                                |  |  |  |  |
|      | Responsible person, Margaret P. Proctor, organization code 5320, (216) 977-7526.      |                                  |                                                |  |  |  |  |
| 128  | . DISTRIBUTION/AVAILABILITY STAT                                                      | EMENT                            | 12b. DISTRIBUTION CODE                         |  |  |  |  |
|      | Unclassified - Unlimited<br>Subject Category 20                                       |                                  |                                                |  |  |  |  |
|      | This publication is available from the                                                | NASA Center for Aerospace Inform | mation, (301) 621-0390.                        |  |  |  |  |
| 13.  | ABSTRACT (Maximum 200 words)                                                          |                                  |                                                |  |  |  |  |

Brush seals are compliant contacting seals and have significantly lower leakage than labyrinth seals in gas turbine applications. Their long life and low leakage make them candidates for use in rocket engine turbopumps. Brush seals, 50.8 mm (2 in.) in diameter with a nominal 127- $\mu$ m (0.005-in.) radial interference, were tested in liquid nitrogen (LN<sub>2</sub>) and liquid hydrogen (LH<sub>2</sub>) at shaft speeds up to 35 000 and 65 000 rpm, respectively, and at pressure drops up to 1.21 MPa (175 psid) per brush. A labyrinth seal was also tested in liquid nitrogen to provide a baseline. The LN<sub>2</sub> leakage rate of a single brush seal with an initial radial shaft interference of 127  $\mu$ m (0.005 in.) measured one-half to one-third the leakage rate of a 12-tooth labyrinth seal with a radial clearance of 127  $\mu$ m (0.005 in.). Two brushes spaced 7.21  $\mu$ m (0.248 in.) apart leaked about one-half as much as a single brush, and two brushes tightly packed together leaked about three-fourths as much as a single brush. The maximum measured groove depth on the Inconel 718 rotor with a surface finish of 0.81 $\mu$ m (32  $\mu$ in.) was 25  $\mu$ m (0.0010-in.) after 4.3 hr of shaft rotation in liquid nitrogen. The Haynes-25 bristles wore approximately 25 to 76  $\mu$ m (0.001 to 0.003 in.) under the same conditions. Wear results in liquid hydrogen were significantly different. In liquid hydrogen the rotor did not wear, but the bristle material transferred onto the rotor and the initial 127- $\mu$ m (0.005-in.) radial interference was consumed. Relatively high leakage rates were measured in liquid hydrogen. More testing is required to verify the leakage performance, to validate and calibrate analysis techniques, and to determine the wear mechanisms. Performance, staging effects, and preliminary wear results are presented.

| 14. SUBJECT TERMS  Brush seals; Cryogenic sea Liquid nitrogen | ıls; Shaft seals; Dynamic seals; I                    | iquid hydrogen;                                      | 15. NUMBER OF PAGES 78 16. PRICE CODE A05 |
|---------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------|
| 17. SECURITY CLASSIFICATION OF REPORT Unclassified            | 18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified | 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified | 20. LIMITATION OF ABSTRACT                |